Raj-Maharajwala
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -39,21 +39,38 @@ This model is a domain-specific language model based on Llama 3, fine-tuned for
|
|
39 |
- **Model Type:** Instruction-tuned Language Model
|
40 |
- **Base Model:** nvidia/Llama3-ChatQA-1.5-8B
|
41 |
- **Finetuned Model:** Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B
|
|
|
42 |
- **Model Architecture:** Llama
|
43 |
- **Parameters:** 8.05 billion
|
44 |
- **Developer:** Raj Maharajwala
|
45 |
- **License:** llama3
|
46 |
- **Language:** English
|
47 |
|
48 |
-
### Quantized Model
|
|
|
49 |
Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF: https://huggingface.co/Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
|
50 |
|
51 |
## Training Data
|
52 |
|
53 |
-
The model has been fine-tuned on the InsuranceQA dataset, which contains insurance-specific question-answer pairs and domain knowledge.
|
54 |
-
trainable params: 20.97M || all params: 8.05B || trainable%: 0.26%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
|
|
|
|
|
57 |
## Model Architecture
|
58 |
|
59 |
The model uses the Llama 3 architecture with the following key components:
|
|
|
39 |
- **Model Type:** Instruction-tuned Language Model
|
40 |
- **Base Model:** nvidia/Llama3-ChatQA-1.5-8B
|
41 |
- **Finetuned Model:** Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B
|
42 |
+
- **Quantized Model:** Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
|
43 |
- **Model Architecture:** Llama
|
44 |
- **Parameters:** 8.05 billion
|
45 |
- **Developer:** Raj Maharajwala
|
46 |
- **License:** llama3
|
47 |
- **Language:** English
|
48 |
|
49 |
+
### Quantized Model
|
50 |
+
|
51 |
Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF: https://huggingface.co/Raj-Maharajwala/Open-Insurance-LLM-Llama3-8B-GGUF
|
52 |
|
53 |
## Training Data
|
54 |
|
55 |
+
The model has been fine-tuned on the InsuranceQA dataset using LoRA (8 bit), which contains insurance-specific question-answer pairs and domain knowledge.
|
56 |
+
trainable params: 20.97M || all params: 8.05B || trainable %: 0.26%
|
57 |
+
```bash
|
58 |
+
LoraConfig(
|
59 |
+
r=8,
|
60 |
+
lora_alpha=32,
|
61 |
+
lora_dropout=0.05,
|
62 |
+
bias="none",
|
63 |
+
task_type="CAUSAL_LM",
|
64 |
+
target_modules=['up_proj', 'down_proj', 'gate_proj', 'k_proj', 'q_proj', 'v_proj', 'o_proj']
|
65 |
+
)
|
66 |
+
|
67 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66315b34b1c6e12e1c304bf8/ZzHaMo1Kt9XNnFh24H3gt.png)
|
68 |
+
|
69 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/66315b34b1c6e12e1c304bf8/0sLiphsQL-j5km4c5_vru.png)
|
70 |
|
71 |
|
72 |
+
```
|
73 |
+
|
74 |
## Model Architecture
|
75 |
|
76 |
The model uses the Llama 3 architecture with the following key components:
|