RaeGold commited on
Commit
2e9e968
·
verified ·
1 Parent(s): d337b18

Training completed!

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -23,10 +23,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.9255
27
  - name: F1
28
  type: f1
29
- value: 0.9254607556406932
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -36,9 +36,9 @@ should probably proofread and complete it, then remove this comment. -->
36
 
37
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.2169
40
- - Accuracy: 0.9255
41
- - F1: 0.9255
42
 
43
  ## Model description
44
 
@@ -69,8 +69,8 @@ The following hyperparameters were used during training:
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
- | 0.8325 | 1.0 | 250 | 0.3211 | 0.9085 | 0.9072 |
73
- | 0.2483 | 2.0 | 500 | 0.2169 | 0.9255 | 0.9255 |
74
 
75
 
76
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.9265
27
  - name: F1
28
  type: f1
29
+ value: 0.9266798308172675
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
  It achieves the following results on the evaluation set:
39
+ - Loss: 0.2181
40
+ - Accuracy: 0.9265
41
+ - F1: 0.9267
42
 
43
  ## Model description
44
 
 
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.8322 | 1.0 | 250 | 0.3065 | 0.909 | 0.9078 |
73
+ | 0.248 | 2.0 | 500 | 0.2181 | 0.9265 | 0.9267 |
74
 
75
 
76
  ### Framework versions