m8than commited on
Commit
3d18f47
·
1 Parent(s): c262f31

Model card update

Browse files
Files changed (2) hide show
  1. README.md +213 -6
  2. imgs/finch.jpg +0 -0
README.md CHANGED
@@ -1,11 +1,218 @@
1
- ### v6-Finch-14B-HF
2
 
3
  > HF compatible model for Finch-14B.
4
- > This is an early preview for testing.
5
- > **This is not final**
6
 
7
- ![Crimson Finch Bird](./imgs/crimson-finch-unsplash-david-clode.jpg)
8
 
9
- > origin pth weight at https://huggingface.co/BlinkDL/rwkv-6-world/blob/main/ .
10
 
11
- More details to be done.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Huggingface RWKV Finch 14B Model
2
 
3
  > HF compatible model for Finch-14B.
 
 
4
 
5
+ ![Finch Bird](./imgs/finch.jpg)
6
 
 
7
 
8
+ > **! Important Note !**
9
+ >
10
+ > The following is the HF transformers implementation of the Finch 14B model. This is meant to be used with the huggingface transformers
11
+ >
12
+ > [For the full model weights on its own, to use with other RWKV libraries, refer to `RWKV/v5-EagleX-v2-7B-pth`](https://huggingface.co/RWKV/v5-EagleX-v2-7B-pth)
13
+ >
14
+ >
15
+
16
+
17
+ ## Quickstart with the hugging face transformer library
18
+
19
+ ```
20
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-14B-HF", trust_remote_code=True).to(torch.float32)
21
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-14B-HF", trust_remote_code=True)
22
+ ```
23
+
24
+ ## Evaluation
25
+
26
+ The following demonstrates the improvements from Eagle 7B to Finch 14B
27
+
28
+ | | [Eagle 7B](https://huggingface.co/RWKV/v5-Eagle-7B-HF) | [Finch 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 14B](https://huggingface.co/RWKV/v6-Finch-14B-HF) |
29
+ | --- | --- | --- | --- |
30
+ | [ARC](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/arc) | 39.59% | 41.47% | 46.33% |
31
+ | [HellaSwag](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/hellaswag) | 53.09% | 55.96% | 57.69% |
32
+ | [MMLU](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/mmlu) | 30.86% | 41.70% | 56.05% |
33
+ | [Truthful QA](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/truthfulqa) | 33.03% | 34.82% | 39.27% |
34
+ | [Winogrande](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/winogrande) | 67.56% | 71.19% | 74.43% |
35
+
36
+ #### Running on CPU via HF transformers
37
+
38
+ ```python
39
+ import torch
40
+ from transformers import AutoModelForCausalLM, AutoTokenizer
41
+
42
+ def generate_prompt(instruction, input=""):
43
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
44
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
45
+ if input:
46
+ return f"""Instruction: {instruction}
47
+
48
+ Input: {input}
49
+
50
+ Response:"""
51
+ else:
52
+ return f"""User: hi
53
+
54
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
55
+
56
+ User: {instruction}
57
+
58
+ Assistant:"""
59
+
60
+
61
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True).to(torch.float32)
62
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
63
+
64
+ text = "请介绍北京的旅游景点"
65
+ prompt = generate_prompt(text)
66
+
67
+ inputs = tokenizer(prompt, return_tensors="pt")
68
+ output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
69
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
70
+ ```
71
+
72
+ output:
73
+
74
+ ```shell
75
+ User: hi
76
+
77
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
78
+
79
+ User: 请介绍北京的旅游景点
80
+
81
+ Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
82
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
83
+ 2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
84
+ 3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
85
+ 4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
86
+ 5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
87
+ 6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
88
+ 7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
89
+ 8. 天坛:是中国古代皇家
90
+ ```
91
+
92
+ #### Running on GPU via HF transformers
93
+
94
+ ```python
95
+ import torch
96
+ from transformers import AutoModelForCausalLM, AutoTokenizer
97
+
98
+ def generate_prompt(instruction, input=""):
99
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
100
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
101
+ if input:
102
+ return f"""Instruction: {instruction}
103
+
104
+ Input: {input}
105
+
106
+ Response:"""
107
+ else:
108
+ return f"""User: hi
109
+
110
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
111
+
112
+ User: {instruction}
113
+
114
+ Assistant:"""
115
+
116
+
117
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True, torch_dtype=torch.float16).to(0)
118
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
119
+
120
+ text = "介绍一下大熊猫"
121
+ prompt = generate_prompt(text)
122
+
123
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
124
+ output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
125
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
126
+ ```
127
+
128
+ output:
129
+
130
+ ```shell
131
+ User: hi
132
+
133
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
134
+
135
+ User: 介绍一下大熊猫
136
+
137
+ Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的
138
+ ```
139
+
140
+ #### Batch Inference
141
+
142
+ ```python
143
+ import torch
144
+ from transformers import AutoModelForCausalLM, AutoTokenizer
145
+
146
+ def generate_prompt(instruction, input=""):
147
+ instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
148
+ input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
149
+ if input:
150
+ return f"""Instruction: {instruction}
151
+
152
+ Input: {input}
153
+
154
+ Response:"""
155
+ else:
156
+ return f"""User: hi
157
+
158
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
159
+
160
+ User: {instruction}
161
+
162
+ Assistant:"""
163
+
164
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True).to(torch.float32)
165
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
166
+
167
+ texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
168
+ prompts = [generate_prompt(text) for text in texts]
169
+
170
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True)
171
+ outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
172
+
173
+ for output in outputs:
174
+ print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
175
+
176
+ ```
177
+
178
+ output:
179
+
180
+ ```shell
181
+ User: hi
182
+
183
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
184
+
185
+ User: 请介绍北京的旅游景点
186
+
187
+ Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
188
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
189
+ 2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
190
+ 3. 颐和
191
+ User: hi
192
+
193
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
194
+
195
+ User: 介绍一下大熊猫
196
+
197
+ Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
198
+ User: hi
199
+
200
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
201
+
202
+ User: 乌兰察布
203
+
204
+ Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌
205
+ ```
206
+
207
+ ## Links
208
+ - [Our wiki](https://wiki.rwkv.com)
209
+ - [Recursal.AI Cloud Platform](https://recursal.ai)
210
+ - [Featherless Inference](https://featherless.ai/models/RWKV/Finch-14B)
211
+ - [Blog article, detailing our model launch](https://blog.rwkv.com/p/rwkv-v6-finch-14b-is-here)
212
+
213
+ ## Acknowledgement
214
+ We are grateful for the help and support from the following key groups:
215
+
216
+ - [Recursal.ai](https://recursal.ai) team for financing the GPU resources, and managing the training of this foundation model - you can run the Eagle line of RWKV models on their cloud / on-premise platform today.
217
+ - EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
218
+ - Linux Foundation AI & Data group for supporting and hosting the RWKV project
imgs/finch.jpg ADDED