jklj077 commited on
Commit
2292f49
·
verified ·
1 Parent(s): b1faa85

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -50
README.md CHANGED
@@ -87,56 +87,7 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
 
88
  To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
89
 
90
- For deployment, we recommend using vLLM. You can enable the long-context capabilities by following these steps:
91
-
92
- 1. **Install vLLM**: You can install vLLM by running the following command.
93
-
94
- ```bash
95
- pip install "vllm>=0.4.3"
96
- ```
97
-
98
- Or you can install vLLM from [source](https://github.com/vllm-project/vllm/).
99
-
100
- 2. **Configure Model Settings**: After downloading the model weights, modify the `config.json` file by including the below snippet:
101
- ```json
102
- {
103
- "architectures": [
104
- "Qwen2ForCausalLM"
105
- ],
106
- // ...
107
- "vocab_size": 152064,
108
-
109
- // adding the following snippets
110
- "rope_scaling": {
111
- "factor": 4.0,
112
- "original_max_position_embeddings": 32768,
113
- "type": "yarn"
114
- }
115
- }
116
- ```
117
- This snippet enable YARN to support longer contexts.
118
-
119
- 3. **Model Deployment**: Utilize vLLM to deploy your model. For instance, you can set up an openAI-like server using the command:
120
-
121
- ```bash
122
- python -m vllm.entrypoints.openai.api_server --served-model-name Qwen2-72B-Instruct --model path/to/weights
123
- ```
124
-
125
- Then you can access the Chat API by:
126
-
127
- ```bash
128
- curl http://localhost:8000/v1/chat/completions \
129
- -H "Content-Type: application/json" \
130
- -d '{
131
- "model": "Qwen2-72B-Instruct",
132
- "messages": [
133
- {"role": "system", "content": "You are a helpful assistant."},
134
- {"role": "user", "content": "Your Long Input Here."}
135
- ]
136
- }'
137
- ```
138
-
139
- For further usage instructions of vLLM, please refer to our [Github](https://github.com/QwenLM/Qwen2).
140
 
141
  **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
142
 
 
87
 
88
  To handle extensive inputs exceeding 32,768 tokens, we utilize [YARN](https://arxiv.org/abs/2309.00071), a technique for enhancing model length extrapolation, ensuring optimal performance on lengthy texts.
89
 
90
+ For deployment, we recommend using vLLM. Please refer to our [Github](https://github.com/QwenLM/Qwen2.5) for usage if you are not familar with vLLM.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91
 
92
  **Note**: Presently, vLLM only supports static YARN, which means the scaling factor remains constant regardless of input length, **potentially impacting performance on shorter texts**. We advise adding the `rope_scaling` configuration only when processing long contexts is required.
93