Text Generation
GGUF
English
esper
esper-2
valiant
valiant-labs
llama
llama-3.2
llama-3.2-instruct
llama-3.2-instruct-3b
llama-3
llama-3-instruct
llama-3-instruct-3b
3b
code
code-instruct
python
dev-ops
terraform
azure
aws
gcp
architect
engineer
developer
conversational
chat
instruct
Eval Results
Inference Endpoints
File size: 4,446 Bytes
6898ff1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
---
language:
- en
pipeline_tag: text-generation
tags:
- esper
- esper-2
- valiant
- valiant-labs
- llama
- llama-3.2
- llama-3.2-instruct
- llama-3.2-instruct-3b
- llama-3
- llama-3-instruct
- llama-3-instruct-3b
- 3b
- code
- code-instruct
- python
- dev-ops
- terraform
- azure
- aws
- gcp
- architect
- engineer
- developer
- conversational
- chat
- instruct
base_model: meta-llama/Llama-3.2-3B-Instruct
datasets:
- sequelbox/Titanium
- sequelbox/Tachibana
- sequelbox/Supernova
model-index:
- name: ValiantLabs/Llama3.2-3B-Esper2
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-Shot)
type: Winogrande
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.27
name: acc
- task:
type: text-generation
name: Text Generation
dataset:
name: ARC Challenge (25-Shot)
type: arc-challenge
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 43.17
name: normalized accuracy
model_type: llama
license: llama3.2
---
[![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
# QuantFactory/Llama3.2-3B-Esper2-GGUF
This is quantized version of [ValiantLabs/Llama3.2-3B-Esper2](https://huggingface.co/ValiantLabs/Llama3.2-3B-Esper2) created using llama.cpp
# Original Model Card
![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64f267a8a4f79a118e0fcc89%2F4I6oK8DG0so4VD8GroFsd.jpeg%3C%2Fspan%3E)
Esper 2 is a DevOps and cloud architecture code specialist built on Llama 3.2 3b.
- Expertise-driven, an AI assistant focused on AWS, Azure, GCP, Terraform, Dockerfiles, pipelines, shell scripts and more!
- Real world problem solving and high quality code instruct performance within the Llama 3.2 Instruct chat format
- Finetuned on synthetic [DevOps-instruct](https://huggingface.co/datasets/sequelbox/Titanium) and [code-instruct](https://huggingface.co/datasets/sequelbox/Tachibana) data generated with Llama 3.1 405b.
- Overall chat performance supplemented with [generalist chat data.](https://huggingface.co/datasets/sequelbox/Supernova)
Try our code-instruct AI assistant [Enigma!](https://huggingface.co/ValiantLabs/Llama3.1-8B-Enigma)
## Version
This is the **2024-10-03** release of Esper 2 for Llama 3.2 3b.
Esper 2 is also available for [Llama 3.1 8b!](https://huggingface.co/ValiantLabs/Llama3.1-8B-Esper2)
Esper 2 will be coming to more model sizes soon :)
## Prompting Guide
Esper 2 uses the [Llama 3.2 Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) prompt format. The example script below can be used as a starting point for general chat:
```python
import transformers
import torch
model_id = "ValiantLabs/Llama3.2-3B-Esper2"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are an AI assistant."},
{"role": "user", "content": "Hi, how do I optimize the size of a Docker image?"}
]
outputs = pipeline(
messages,
max_new_tokens=2048,
)
print(outputs[0]["generated_text"][-1])
```
## The Model
Esper 2 is built on top of Llama 3.2 3b Instruct, improving performance through high quality DevOps, code, and chat data in Llama 3.2 Instruct prompt style.
Our current version of Esper 2 is trained on DevOps data from [sequelbox/Titanium](https://huggingface.co/datasets/sequelbox/Titanium), supplemented by code-instruct data from [sequelbox/Tachibana](https://huggingface.co/datasets/sequelbox/Tachibana) and general chat data from [sequelbox/Supernova.](https://huggingface.co/datasets/sequelbox/Supernova)
![image/jpeg](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F63444f2687964b331809eb55%2FVCJ8Fmefd8cdVhXSSxJiD.jpeg%3C%2Fspan%3E)
Esper 2 is created by [Valiant Labs.](http://valiantlabs.ca/)
[Check out our HuggingFace page for Shining Valiant 2, Enigma, and our other Build Tools models for creators!](https://huggingface.co/ValiantLabs)
[Follow us on X for updates on our models!](https://twitter.com/valiant_labs)
We care about open source.
For everyone to use.
We encourage others to finetune further from our models.
|