--- library_name: transformers license: other base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: SimpleBerry/LLaMA-O1-Base-1127 results: [] --- [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory) # QuantFactory/LLaMA-O1-Base-1127-GGUF This is quantized version of [SimpleBerry/LLaMA-O1-Base-1127](https://huggingface.co/SimpleBerry/LLaMA-O1-Base-1127) created using llama.cpp # Original Model Card # SimpleBerry/LLaMA-O1-Base-1127 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the longcot_pt dataset. Do not use this model without supervised training, please use [LLaMA-O1-Supervised-1129](https://huggingface.co/SimpleBerry/LLaMA-O1-Supervised-1129) for directly usage. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 24 - total_train_batch_size: 24 - total_eval_batch_size: 192 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.46.2 - Pytorch 2.3.1 - Datasets 3.1.0 - Tokenizers 0.20.1