munish0838 commited on
Commit
3185b7e
·
verified ·
1 Parent(s): c3ca432

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: mit
6
+ datasets:
7
+ - wenbopan/Chinese-dpo-pairs
8
+ - Intel/orca_dpo_pairs
9
+ - argilla/ultrafeedback-binarized-preferences-cleaned
10
+ - jondurbin/truthy-dpo-v0.1
11
+ pipeline_tag: text-generation
12
+ tags:
13
+ - llama
14
+ - conversational
15
+ base_model: wenbopan/Faro-Yi-9B-DPO
16
+ ---
17
+
18
+ # Faro-Yi-9B-DP-GGUF
19
+ This is quantized version of [wenbopan/Faro-Yi-9B-DPO](https://huggingface.co/wenbopan/Faro-Yi-9B-DPO) created using llama.cpp
20
+ # Model Description
21
+
22
+ This is the DPO version of [wenbopan/Faro-Yi-9B](https://huggingface.co/wenbopan/Faro-Yi-9B). Compared to Faro-Yi-9B and [Yi-9B-200K](https://huggingface.co/01-ai/Yi-9B-200K), the DPO model excels at many tasks, surpassing the original Yi-9B-200K by a large margin. On the [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard), it ranks **#2** among all 9B models, **#1** among all Yi-9B variants.
23
+
24
+ | **Metric** | **MMLU** | **GSM8K** | **hellaswag** | **truthfulqa** | **ai2_arc** | **winogrande** | **CMMLU** |
25
+ | ----------------------- | --------- | --------- | ------------- | -------------- | ----------- | -------------- | --------- |
26
+ | **Yi-9B-200K** | 65.73 | 50.49 | 56.72 | 33.80 | 69.25 | 71.67 | 71.97 |
27
+ | **Faro-Yi-9B** | 68.80 | 63.08 | 57.28 | 40.86 | 72.58 | 71.11 | 73.28 |
28
+ | **Faro-Yi-9B-DPO** | **69.98** | **66.11** | **59.04** | **48.01** | **75.68** | **73.40** | **75.23** |
29
+
30
+ Faro-Yi-9B-DPO's responses are also favored by GPT-4 Judge in MT-Bench
31
+
32
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62cd3a3691d27e60db0698b0/ArlnloL4aPfiiD6kUqaSH.png)
33
+
34
+ ## How to Use
35
+
36
+ Faro-Yi-9B-DPO uses the chatml template and performs well in both short and long contexts. For longer inputs under **24GB of VRAM**, I recommend to use vLLM to have a max prompt of 32K. Setting `kv_cache_dtype="fp8_e5m2"` allows for 48K input length. 4bit-AWQ quantization on top of that can boost input length to 160K, albeit with some performance impact. Adjust `max_model_len` arg in vLLM or `config.json` to avoid OOM.
37
+
38
+
39
+ ```python
40
+ import io
41
+ import requests
42
+ from PyPDF2 import PdfReader
43
+ from vllm import LLM, SamplingParams
44
+
45
+ llm = LLM(model="wenbopan/Faro-Yi-9B-DPO", kv_cache_dtype="fp8_e5m2", max_model_len=100000)
46
+
47
+ pdf_data = io.BytesIO(requests.get("https://arxiv.org/pdf/2303.08774.pdf").content)
48
+ document = "".join(page.extract_text() for page in PdfReader(pdf_data).pages) # 100 pages
49
+
50
+ question = f"{document}\n\nAccording to the paper, what is the parameter count of GPT-4?"
51
+ messages = [ {"role": "user", "content": question} ] # 83K tokens
52
+ prompt = llm.get_tokenizer().apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
53
+ output = llm.generate(prompt, SamplingParams(temperature=0.8, max_tokens=500))
54
+ print(output[0].outputs[0].text)
55
+ # Yi-9B-200K: 175B. GPT-4 has 175B \nparameters. How many models were combined to create GPT-4? Answer: 6. ...
56
+ # Faro-Yi-9B: GPT-4 does not have a publicly disclosed parameter count due to the competitive landscape and safety implications of large-scale models like GPT-4. ...
57
+ ```
58
+
59
+
60
+ <details> <summary>Or With Transformers</summary>
61
+
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+
65
+ model = AutoModelForCausalLM.from_pretrained('wenbopan/Faro-Yi-9B-DPO', device_map="cuda")
66
+ tokenizer = AutoTokenizer.from_pretrained('wenbopan/Faro-Yi-9B-DPO')
67
+ messages = [
68
+ {"role": "system", "content": "You are a helpful assistant. Always answer with a short response."},
69
+ {"role": "user", "content": "Tell me what is Pythagorean theorem like you are a pirate."}
70
+ ]
71
+
72
+ input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
73
+ generated_ids = model.generate(input_ids, max_new_tokens=512, temperature=0.5)
74
+ response = tokenizer.decode(generated_ids[0], skip_special_tokens=True) # Aye, matey! The Pythagorean theorem is a nautical rule that helps us find the length of the third side of a triangle. ...
75
+ ```
76
+
77
+ </details>