--- license: apache-2.0 pipeline_tag: text-generation base_model: Bin12345/AutoCoder_S_6.7B --- # QuantFactory/AutoCoder_S_6.7B-GGUF This is quantized version of [Bin12345/AutoCoder_S_6.7B](https://huggingface.co/Bin12345/AutoCoder_S_6.7B) created using llama.cpp # Model Description We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%). Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**. This is the 6.7B version of AutoCoder. Its base model is deepseeker-coder. See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder). Simple test script: ``` model_path = "" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") HumanEval = load_dataset("evalplus/humanevalplus") Input = "" # input your question here messages=[ { 'role': 'user', 'content': Input} ] inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device) outputs = model.generate(inputs, max_new_tokens=1024, do_sample=False, temperature=0.0, top_p=1.0, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id) answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True) ``` Paper: https://arxiv.org/abs/2405.14906