Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- QizhiPei/BioT5_finetune_dataset
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
## Example Usage
|
9 |
+
```python
|
10 |
+
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
11 |
+
|
12 |
+
tokenizer = T5Tokenizer.from_pretrained("QizhiPei/biot5-base-text2mol", model_max_length=512)
|
13 |
+
model = T5ForConditionalGeneration.from_pretrained('QizhiPei/biot5-base-text2mol')
|
14 |
+
|
15 |
+
task_definition = 'Definition: You are given a molecule description in English. Your job is to generate the molecule SELFIES that fits the description.\n\n'
|
16 |
+
text_input = 'The molecule is a monocarboxylic acid anion obtained by deprotonation of the carboxy and sulfino groups of 3-sulfinopropionic acid. Major microspecies at pH 7.3 It is an organosulfinate oxoanion and a monocarboxylic acid anion. It is a conjugate base of a 3-sulfinopropionic acid.'
|
17 |
+
task_input = f'Now complete the following example -\nInput: {text_input}\nOutput: '
|
18 |
+
|
19 |
+
model_input = task_definition + task_input
|
20 |
+
input_ids = tokenizer(model_input, return_tensors="pt").input_ids
|
21 |
+
|
22 |
+
generation_config = model.generation_config
|
23 |
+
generation_config.max_length = 512
|
24 |
+
generation_config.num_beams = 1
|
25 |
+
|
26 |
+
outputs = model.generate(input_ids, generation_config=generation_config)
|
27 |
+
output_selfies = tokenizer.decode(outputs[0], skip_special_tokens=True).replace(' ', '')
|
28 |
+
print(output_selfies)
|
29 |
+
|
30 |
+
import selfies as sf
|
31 |
+
output_smiles = sf.decoder(output_selfies)
|
32 |
+
print(output_smiles)
|
33 |
+
```
|
34 |
+
|
35 |
+
## References
|
36 |
+
For more information, please refer to our paper and GitHub repository.
|
37 |
+
|
38 |
+
Paper: [BioT5: Enriching Cross-modal Integration in Biology with Chemical Knowledge and Natural Language Associations](https://arxiv.org/abs/2310.07276)
|
39 |
+
|
40 |
+
GitHub: [BioT5](https://github.com/QizhiPei/BioT5)
|
41 |
+
|
42 |
+
Authors: *Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan Gao, Lijun Wu, Yingce Xia, and Rui Yan*
|