wangrongsheng
commited on
Commit
·
e23e6a8
1
Parent(s):
f9bf84a
add v4
Browse files- LLM-Detector-V4-11w/README.md +56 -0
- LLM-Detector-V4-11w/adapter_config.json +22 -0
- LLM-Detector-V4-11w/adapter_model.bin +3 -0
- LLM-Detector-V4-11w/all_results.json +7 -0
- LLM-Detector-V4-11w/checkpoint-1000/README.md +207 -0
- LLM-Detector-V4-11w/checkpoint-1000/adapter_config.json +22 -0
- LLM-Detector-V4-11w/checkpoint-1000/adapter_model.bin +3 -0
- LLM-Detector-V4-11w/checkpoint-1000/optimizer.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-1000/qwen.tiktoken +0 -0
- LLM-Detector-V4-11w/checkpoint-1000/rng_state.pth +3 -0
- LLM-Detector-V4-11w/checkpoint-1000/scheduler.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-1000/special_tokens_map.json +7 -0
- LLM-Detector-V4-11w/checkpoint-1000/tokenization_qwen.py +276 -0
- LLM-Detector-V4-11w/checkpoint-1000/tokenizer_config.json +13 -0
- LLM-Detector-V4-11w/checkpoint-1000/trainer_state.json +79 -0
- LLM-Detector-V4-11w/checkpoint-1000/training_args.bin +3 -0
- LLM-Detector-V4-11w/checkpoint-2000/README.md +207 -0
- LLM-Detector-V4-11w/checkpoint-2000/adapter_config.json +22 -0
- LLM-Detector-V4-11w/checkpoint-2000/adapter_model.bin +3 -0
- LLM-Detector-V4-11w/checkpoint-2000/optimizer.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-2000/qwen.tiktoken +0 -0
- LLM-Detector-V4-11w/checkpoint-2000/rng_state.pth +3 -0
- LLM-Detector-V4-11w/checkpoint-2000/scheduler.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-2000/special_tokens_map.json +7 -0
- LLM-Detector-V4-11w/checkpoint-2000/tokenization_qwen.py +276 -0
- LLM-Detector-V4-11w/checkpoint-2000/tokenizer_config.json +13 -0
- LLM-Detector-V4-11w/checkpoint-2000/trainer_state.json +139 -0
- LLM-Detector-V4-11w/checkpoint-2000/training_args.bin +3 -0
- LLM-Detector-V4-11w/checkpoint-3000/README.md +207 -0
- LLM-Detector-V4-11w/checkpoint-3000/adapter_config.json +22 -0
- LLM-Detector-V4-11w/checkpoint-3000/adapter_model.bin +3 -0
- LLM-Detector-V4-11w/checkpoint-3000/optimizer.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-3000/qwen.tiktoken +0 -0
- LLM-Detector-V4-11w/checkpoint-3000/rng_state.pth +3 -0
- LLM-Detector-V4-11w/checkpoint-3000/scheduler.pt +3 -0
- LLM-Detector-V4-11w/checkpoint-3000/special_tokens_map.json +7 -0
- LLM-Detector-V4-11w/checkpoint-3000/tokenization_qwen.py +276 -0
- LLM-Detector-V4-11w/checkpoint-3000/tokenizer_config.json +13 -0
- LLM-Detector-V4-11w/checkpoint-3000/trainer_state.json +199 -0
- LLM-Detector-V4-11w/checkpoint-3000/training_args.bin +3 -0
- LLM-Detector-V4-11w/qwen.tiktoken +0 -0
- LLM-Detector-V4-11w/special_tokens_map.json +7 -0
- LLM-Detector-V4-11w/tokenization_qwen.py +276 -0
- LLM-Detector-V4-11w/tokenizer_config.json +13 -0
- LLM-Detector-V4-11w/train_results.json +7 -0
- LLM-Detector-V4-11w/trainer_log.jsonl +38 -0
- LLM-Detector-V4-11w/trainer_state.json +250 -0
- LLM-Detector-V4-11w/training_args.bin +3 -0
- LLM-Detector-V4-11w/training_loss.png +0 -0
LLM-Detector-V4-11w/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: ./Qwen-1_8B-Chat
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: qwen-1.8b-1
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# qwen-1.8b-1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [./Qwen-1_8B-Chat](https://huggingface.co/./Qwen-1_8B-Chat) on the ta, the tb, the tc, the td, the te, the tf, the tg and the th datasets.
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 8
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 32
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- num_epochs: 1.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
### Framework versions
|
52 |
+
|
53 |
+
- Transformers 4.33.0
|
54 |
+
- Pytorch 2.1.1+cu121
|
55 |
+
- Datasets 2.14.7
|
56 |
+
- Tokenizers 0.13.3
|
LLM-Detector-V4-11w/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-1_8B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V4-11w/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6965aafad356ecc98e45461ada6572c6cd6eacd624f7f2001ff6a47130d5d0c
|
3 |
+
size 6308670
|
LLM-Detector-V4-11w/all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 0.09819089700903973,
|
4 |
+
"train_runtime": 7694.3429,
|
5 |
+
"train_samples_per_second": 15.456,
|
6 |
+
"train_steps_per_second": 0.483
|
7 |
+
}
|
LLM-Detector-V4-11w/checkpoint-1000/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-1_8B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.2
|
LLM-Detector-V4-11w/checkpoint-1000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-1_8B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V4-11w/checkpoint-1000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:124dd6f8fccbde92448f1727138226664a814afabc1e3e10090af0abc318aa1e
|
3 |
+
size 6308670
|
LLM-Detector-V4-11w/checkpoint-1000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:620e76eef0903318cf917c4b7bb18eecaec0acfa968aeca9e3345c8bc0ff0428
|
3 |
+
size 12623610
|
LLM-Detector-V4-11w/checkpoint-1000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V4-11w/checkpoint-1000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6b2411bd26912ef7914bec8dace4f47f701c3b0d9fd4166ad1988f8b10967c8
|
3 |
+
size 14244
|
LLM-Detector-V4-11w/checkpoint-1000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:913bff447363333d34842812791634ae8b8782dead63524bc6f9a5994b43ae65
|
3 |
+
size 1064
|
LLM-Detector-V4-11w/checkpoint-1000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V4-11w/checkpoint-1000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V4-11w/checkpoint-1000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V4-11w/checkpoint-1000/trainer_state.json
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.26907036189963673,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.991071065046783e-05,
|
14 |
+
"loss": 3.0435,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.9643480408906496e-05,
|
20 |
+
"loss": 0.0382,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.920021814047156e-05,
|
26 |
+
"loss": 0.0227,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.858409013313266e-05,
|
32 |
+
"loss": 0.0258,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.7799497480410125e-05,
|
38 |
+
"loss": 0.0256,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.685204464371269e-05,
|
44 |
+
"loss": 0.0312,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.574849941884044e-05,
|
50 |
+
"loss": 0.0212,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.449674459261804e-05,
|
56 |
+
"loss": 0.0271,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.310572163498205e-05,
|
62 |
+
"loss": 0.0203,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.158536682873821e-05,
|
68 |
+
"loss": 0.0172,
|
69 |
+
"step": 1000
|
70 |
+
}
|
71 |
+
],
|
72 |
+
"logging_steps": 100,
|
73 |
+
"max_steps": 3716,
|
74 |
+
"num_train_epochs": 1,
|
75 |
+
"save_steps": 1000,
|
76 |
+
"total_flos": 8.230715481076531e+16,
|
77 |
+
"trial_name": null,
|
78 |
+
"trial_params": null
|
79 |
+
}
|
LLM-Detector-V4-11w/checkpoint-1000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc4e49fff68420e89c2879345b8b8f748c6b8c4a56351c173150f7352012454
|
3 |
+
size 4664
|
LLM-Detector-V4-11w/checkpoint-2000/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-1_8B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.2
|
LLM-Detector-V4-11w/checkpoint-2000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-1_8B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V4-11w/checkpoint-2000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1986936875e1b229164da9982fb915abcb41eb04c84a17c11873032bdc7916eb
|
3 |
+
size 6308670
|
LLM-Detector-V4-11w/checkpoint-2000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a0cb946c801493b87dd628891a62c65a4096d3599d4de1536f8d115192d4619
|
3 |
+
size 12623610
|
LLM-Detector-V4-11w/checkpoint-2000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V4-11w/checkpoint-2000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:293df5460fc572910480c53776d11674c9b37961d0e3a23477756a518f2153ef
|
3 |
+
size 14244
|
LLM-Detector-V4-11w/checkpoint-2000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74bac387f60615f990f0d8cb5bf4d07c8fad3441e7fa74f3ac632d281ac044e5
|
3 |
+
size 1064
|
LLM-Detector-V4-11w/checkpoint-2000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V4-11w/checkpoint-2000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V4-11w/checkpoint-2000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V4-11w/checkpoint-2000/trainer_state.json
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.5381407237992735,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 2000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.991071065046783e-05,
|
14 |
+
"loss": 3.0435,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.9643480408906496e-05,
|
20 |
+
"loss": 0.0382,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.920021814047156e-05,
|
26 |
+
"loss": 0.0227,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.858409013313266e-05,
|
32 |
+
"loss": 0.0258,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.7799497480410125e-05,
|
38 |
+
"loss": 0.0256,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.685204464371269e-05,
|
44 |
+
"loss": 0.0312,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.574849941884044e-05,
|
50 |
+
"loss": 0.0212,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.449674459261804e-05,
|
56 |
+
"loss": 0.0271,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.310572163498205e-05,
|
62 |
+
"loss": 0.0203,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.158536682873821e-05,
|
68 |
+
"loss": 0.0172,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 3.994654029322313e-05,
|
74 |
+
"loss": 0.0241,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 3.8200948408864986e-05,
|
80 |
+
"loss": 0.0167,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 3.636106019677602e-05,
|
86 |
+
"loss": 0.0134,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 3.4440018250689767e-05,
|
92 |
+
"loss": 0.0145,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 3.2451544857469436e-05,
|
98 |
+
"loss": 0.0127,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 3.040984397678245e-05,
|
104 |
+
"loss": 0.0164,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 2.8329499780114865e-05,
|
110 |
+
"loss": 0.0187,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 2.6225372473876565e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 2.41124921507481e-05,
|
122 |
+
"loss": 0.0156,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 2.2005951427504784e-05,
|
128 |
+
"loss": 0.0184,
|
129 |
+
"step": 2000
|
130 |
+
}
|
131 |
+
],
|
132 |
+
"logging_steps": 100,
|
133 |
+
"max_steps": 3716,
|
134 |
+
"num_train_epochs": 1,
|
135 |
+
"save_steps": 1000,
|
136 |
+
"total_flos": 1.6501750008604262e+17,
|
137 |
+
"trial_name": null,
|
138 |
+
"trial_params": null
|
139 |
+
}
|
LLM-Detector-V4-11w/checkpoint-2000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc4e49fff68420e89c2879345b8b8f748c6b8c4a56351c173150f7352012454
|
3 |
+
size 4664
|
LLM-Detector-V4-11w/checkpoint-3000/README.md
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-1_8B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
### Framework versions
|
205 |
+
|
206 |
+
|
207 |
+
- PEFT 0.6.2
|
LLM-Detector-V4-11w/checkpoint-3000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-1_8B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V4-11w/checkpoint-3000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:028af04c0764159e23c5c6ec745e763a194d72ee12668faea997060fe0adcdb7
|
3 |
+
size 6308670
|
LLM-Detector-V4-11w/checkpoint-3000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d958e6fedf6779f5f6ff24e610500ffe7b00b1fc599511ff25458b9832ff9cf4
|
3 |
+
size 12623610
|
LLM-Detector-V4-11w/checkpoint-3000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V4-11w/checkpoint-3000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:116c8e4fc5473807936d8062da5727b2e081708525f159b7c34cafb7a954573e
|
3 |
+
size 14244
|
LLM-Detector-V4-11w/checkpoint-3000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3cd44a3ee0f872669b221a2176a2080abe02eb59a5fdb46ac96d95b4fbe14fcf
|
3 |
+
size 1064
|
LLM-Detector-V4-11w/checkpoint-3000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V4-11w/checkpoint-3000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V4-11w/checkpoint-3000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V4-11w/checkpoint-3000/trainer_state.json
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.8072110856989103,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.991071065046783e-05,
|
14 |
+
"loss": 3.0435,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.9643480408906496e-05,
|
20 |
+
"loss": 0.0382,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.920021814047156e-05,
|
26 |
+
"loss": 0.0227,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.858409013313266e-05,
|
32 |
+
"loss": 0.0258,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.7799497480410125e-05,
|
38 |
+
"loss": 0.0256,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.685204464371269e-05,
|
44 |
+
"loss": 0.0312,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.574849941884044e-05,
|
50 |
+
"loss": 0.0212,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.449674459261804e-05,
|
56 |
+
"loss": 0.0271,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.310572163498205e-05,
|
62 |
+
"loss": 0.0203,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.158536682873821e-05,
|
68 |
+
"loss": 0.0172,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 3.994654029322313e-05,
|
74 |
+
"loss": 0.0241,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 3.8200948408864986e-05,
|
80 |
+
"loss": 0.0167,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 3.636106019677602e-05,
|
86 |
+
"loss": 0.0134,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 3.4440018250689767e-05,
|
92 |
+
"loss": 0.0145,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 3.2451544857469436e-05,
|
98 |
+
"loss": 0.0127,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 3.040984397678245e-05,
|
104 |
+
"loss": 0.0164,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 2.8329499780114865e-05,
|
110 |
+
"loss": 0.0187,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 2.6225372473876565e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 2.41124921507481e-05,
|
122 |
+
"loss": 0.0156,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 2.2005951427504784e-05,
|
128 |
+
"loss": 0.0184,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.57,
|
133 |
+
"learning_rate": 1.9920797636221933e-05,
|
134 |
+
"loss": 0.0119,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.59,
|
139 |
+
"learning_rate": 1.7871925338955412e-05,
|
140 |
+
"loss": 0.0144,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.62,
|
145 |
+
"learning_rate": 1.5873969933681e-05,
|
146 |
+
"loss": 0.0124,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.65,
|
151 |
+
"learning_rate": 1.3941203111481194e-05,
|
152 |
+
"loss": 0.0129,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.67,
|
157 |
+
"learning_rate": 1.2087430911744144e-05,
|
158 |
+
"loss": 0.0067,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.7,
|
163 |
+
"learning_rate": 1.0325895103581462e-05,
|
164 |
+
"loss": 0.0161,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.73,
|
169 |
+
"learning_rate": 8.669178597912217e-06,
|
170 |
+
"loss": 0.0124,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.75,
|
175 |
+
"learning_rate": 7.129115565868463e-06,
|
176 |
+
"loss": 0.0161,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.78,
|
181 |
+
"learning_rate": 5.716706905559768e-06,
|
182 |
+
"loss": 0.0145,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.81,
|
187 |
+
"learning_rate": 4.4420416610303325e-06,
|
188 |
+
"loss": 0.0088,
|
189 |
+
"step": 3000
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"logging_steps": 100,
|
193 |
+
"max_steps": 3716,
|
194 |
+
"num_train_epochs": 1,
|
195 |
+
"save_steps": 1000,
|
196 |
+
"total_flos": 2.4736072211654246e+17,
|
197 |
+
"trial_name": null,
|
198 |
+
"trial_params": null
|
199 |
+
}
|
LLM-Detector-V4-11w/checkpoint-3000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc4e49fff68420e89c2879345b8b8f748c6b8c4a56351c173150f7352012454
|
3 |
+
size 4664
|
LLM-Detector-V4-11w/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V4-11w/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V4-11w/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V4-11w/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V4-11w/train_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 1.0,
|
3 |
+
"train_loss": 0.09819089700903973,
|
4 |
+
"train_runtime": 7694.3429,
|
5 |
+
"train_samples_per_second": 15.456,
|
6 |
+
"train_steps_per_second": 0.483
|
7 |
+
}
|
LLM-Detector-V4-11w/trainer_log.jsonl
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 100, "total_steps": 3716, "loss": 3.0435, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.991071065046783e-05, "epoch": 0.03, "percentage": 2.69, "elapsed_time": "0:03:29", "remaining_time": "2:06:21"}
|
2 |
+
{"current_steps": 200, "total_steps": 3716, "loss": 0.0382, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.9643480408906496e-05, "epoch": 0.05, "percentage": 5.38, "elapsed_time": "0:07:00", "remaining_time": "2:03:04"}
|
3 |
+
{"current_steps": 300, "total_steps": 3716, "loss": 0.0227, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.920021814047156e-05, "epoch": 0.08, "percentage": 8.07, "elapsed_time": "0:10:21", "remaining_time": "1:57:59"}
|
4 |
+
{"current_steps": 400, "total_steps": 3716, "loss": 0.0258, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.858409013313266e-05, "epoch": 0.11, "percentage": 10.76, "elapsed_time": "0:13:45", "remaining_time": "1:54:02"}
|
5 |
+
{"current_steps": 500, "total_steps": 3716, "loss": 0.0256, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.7799497480410125e-05, "epoch": 0.13, "percentage": 13.46, "elapsed_time": "0:17:14", "remaining_time": "1:50:50"}
|
6 |
+
{"current_steps": 600, "total_steps": 3716, "loss": 0.0312, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.685204464371269e-05, "epoch": 0.16, "percentage": 16.15, "elapsed_time": "0:20:42", "remaining_time": "1:47:31"}
|
7 |
+
{"current_steps": 700, "total_steps": 3716, "loss": 0.0212, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.574849941884044e-05, "epoch": 0.19, "percentage": 18.84, "elapsed_time": "0:24:08", "remaining_time": "1:44:01"}
|
8 |
+
{"current_steps": 800, "total_steps": 3716, "loss": 0.0271, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.449674459261804e-05, "epoch": 0.22, "percentage": 21.53, "elapsed_time": "0:27:32", "remaining_time": "1:40:23"}
|
9 |
+
{"current_steps": 900, "total_steps": 3716, "loss": 0.0203, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.310572163498205e-05, "epoch": 0.24, "percentage": 24.22, "elapsed_time": "0:31:00", "remaining_time": "1:37:02"}
|
10 |
+
{"current_steps": 1000, "total_steps": 3716, "loss": 0.0172, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.158536682873821e-05, "epoch": 0.27, "percentage": 26.91, "elapsed_time": "0:34:29", "remaining_time": "1:33:41"}
|
11 |
+
{"current_steps": 1100, "total_steps": 3716, "loss": 0.0241, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.994654029322313e-05, "epoch": 0.3, "percentage": 29.6, "elapsed_time": "0:37:53", "remaining_time": "1:30:07"}
|
12 |
+
{"current_steps": 1200, "total_steps": 3716, "loss": 0.0167, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.8200948408864986e-05, "epoch": 0.32, "percentage": 32.29, "elapsed_time": "0:41:28", "remaining_time": "1:26:58"}
|
13 |
+
{"current_steps": 1300, "total_steps": 3716, "loss": 0.0134, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.636106019677602e-05, "epoch": 0.35, "percentage": 34.98, "elapsed_time": "0:44:54", "remaining_time": "1:23:27"}
|
14 |
+
{"current_steps": 1400, "total_steps": 3716, "loss": 0.0145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.4440018250689767e-05, "epoch": 0.38, "percentage": 37.67, "elapsed_time": "0:48:21", "remaining_time": "1:20:00"}
|
15 |
+
{"current_steps": 1500, "total_steps": 3716, "loss": 0.0127, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.2451544857469436e-05, "epoch": 0.4, "percentage": 40.37, "elapsed_time": "0:51:46", "remaining_time": "1:16:28"}
|
16 |
+
{"current_steps": 1600, "total_steps": 3716, "loss": 0.0164, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.040984397678245e-05, "epoch": 0.43, "percentage": 43.06, "elapsed_time": "0:55:13", "remaining_time": "1:13:02"}
|
17 |
+
{"current_steps": 1700, "total_steps": 3716, "loss": 0.0187, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.8329499780114865e-05, "epoch": 0.46, "percentage": 45.75, "elapsed_time": "0:58:37", "remaining_time": "1:09:31"}
|
18 |
+
{"current_steps": 1800, "total_steps": 3716, "loss": 0.0147, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.6225372473876565e-05, "epoch": 0.48, "percentage": 48.44, "elapsed_time": "1:02:04", "remaining_time": "1:06:04"}
|
19 |
+
{"current_steps": 1900, "total_steps": 3716, "loss": 0.0156, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.41124921507481e-05, "epoch": 0.51, "percentage": 51.13, "elapsed_time": "1:05:29", "remaining_time": "1:02:35"}
|
20 |
+
{"current_steps": 2000, "total_steps": 3716, "loss": 0.0184, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2005951427504784e-05, "epoch": 0.54, "percentage": 53.82, "elapsed_time": "1:09:00", "remaining_time": "0:59:12"}
|
21 |
+
{"current_steps": 2100, "total_steps": 3716, "loss": 0.0119, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.9920797636221933e-05, "epoch": 0.57, "percentage": 56.51, "elapsed_time": "1:12:21", "remaining_time": "0:55:40"}
|
22 |
+
{"current_steps": 2200, "total_steps": 3716, "loss": 0.0144, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.7871925338955412e-05, "epoch": 0.59, "percentage": 59.2, "elapsed_time": "1:15:50", "remaining_time": "0:52:15"}
|
23 |
+
{"current_steps": 2300, "total_steps": 3716, "loss": 0.0124, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5873969933681e-05, "epoch": 0.62, "percentage": 61.89, "elapsed_time": "1:19:14", "remaining_time": "0:48:47"}
|
24 |
+
{"current_steps": 2400, "total_steps": 3716, "loss": 0.0129, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.3941203111481194e-05, "epoch": 0.65, "percentage": 64.59, "elapsed_time": "1:22:41", "remaining_time": "0:45:20"}
|
25 |
+
{"current_steps": 2500, "total_steps": 3716, "loss": 0.0067, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2087430911744144e-05, "epoch": 0.67, "percentage": 67.28, "elapsed_time": "1:26:07", "remaining_time": "0:41:53"}
|
26 |
+
{"current_steps": 2600, "total_steps": 3716, "loss": 0.0161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.0325895103581462e-05, "epoch": 0.7, "percentage": 69.97, "elapsed_time": "1:29:32", "remaining_time": "0:38:26"}
|
27 |
+
{"current_steps": 2700, "total_steps": 3716, "loss": 0.0124, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.669178597912217e-06, "epoch": 0.73, "percentage": 72.66, "elapsed_time": "1:33:00", "remaining_time": "0:34:59"}
|
28 |
+
{"current_steps": 2800, "total_steps": 3716, "loss": 0.0161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 7.129115565868463e-06, "epoch": 0.75, "percentage": 75.35, "elapsed_time": "1:36:30", "remaining_time": "0:31:34"}
|
29 |
+
{"current_steps": 2900, "total_steps": 3716, "loss": 0.0145, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 5.716706905559768e-06, "epoch": 0.78, "percentage": 78.04, "elapsed_time": "1:39:54", "remaining_time": "0:28:06"}
|
30 |
+
{"current_steps": 3000, "total_steps": 3716, "loss": 0.0088, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.4420416610303325e-06, "epoch": 0.81, "percentage": 80.73, "elapsed_time": "1:43:21", "remaining_time": "0:24:40"}
|
31 |
+
{"current_steps": 3100, "total_steps": 3716, "loss": 0.0124, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 3.314224954724593e-06, "epoch": 0.83, "percentage": 83.42, "elapsed_time": "1:46:56", "remaining_time": "0:21:14"}
|
32 |
+
{"current_steps": 3200, "total_steps": 3716, "loss": 0.0154, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.341312948250349e-06, "epoch": 0.86, "percentage": 86.11, "elapsed_time": "1:50:23", "remaining_time": "0:17:48"}
|
33 |
+
{"current_steps": 3300, "total_steps": 3716, "loss": 0.0161, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.5302552960244022e-06, "epoch": 0.89, "percentage": 88.81, "elapsed_time": "1:53:55", "remaining_time": "0:14:21"}
|
34 |
+
{"current_steps": 3400, "total_steps": 3716, "loss": 0.0118, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 8.868455028627959e-07, "epoch": 0.91, "percentage": 91.5, "elapsed_time": "1:57:26", "remaining_time": "0:10:54"}
|
35 |
+
{"current_steps": 3500, "total_steps": 3716, "loss": 0.0067, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 4.156795401186381e-07, "epoch": 0.94, "percentage": 94.19, "elapsed_time": "2:00:47", "remaining_time": "0:07:27"}
|
36 |
+
{"current_steps": 3600, "total_steps": 3716, "loss": 0.0096, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 1.2012301597874863e-07, "epoch": 0.97, "percentage": 96.88, "elapsed_time": "2:04:14", "remaining_time": "0:04:00"}
|
37 |
+
{"current_steps": 3700, "total_steps": 3716, "loss": 0.0113, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": 2.2871344263597496e-09, "epoch": 1.0, "percentage": 99.57, "elapsed_time": "2:07:40", "remaining_time": "0:00:33"}
|
38 |
+
{"current_steps": 3716, "total_steps": 3716, "loss": null, "eval_loss": null, "predict_loss": null, "reward": null, "learning_rate": null, "epoch": 1.0, "percentage": 100.0, "elapsed_time": "2:08:14", "remaining_time": "0:00:00"}
|
LLM-Detector-V4-11w/trainer_state.json
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 0.9998654648190501,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 3716,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.03,
|
13 |
+
"learning_rate": 4.991071065046783e-05,
|
14 |
+
"loss": 3.0435,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.05,
|
19 |
+
"learning_rate": 4.9643480408906496e-05,
|
20 |
+
"loss": 0.0382,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.08,
|
25 |
+
"learning_rate": 4.920021814047156e-05,
|
26 |
+
"loss": 0.0227,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.11,
|
31 |
+
"learning_rate": 4.858409013313266e-05,
|
32 |
+
"loss": 0.0258,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.13,
|
37 |
+
"learning_rate": 4.7799497480410125e-05,
|
38 |
+
"loss": 0.0256,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.16,
|
43 |
+
"learning_rate": 4.685204464371269e-05,
|
44 |
+
"loss": 0.0312,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.19,
|
49 |
+
"learning_rate": 4.574849941884044e-05,
|
50 |
+
"loss": 0.0212,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.22,
|
55 |
+
"learning_rate": 4.449674459261804e-05,
|
56 |
+
"loss": 0.0271,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.24,
|
61 |
+
"learning_rate": 4.310572163498205e-05,
|
62 |
+
"loss": 0.0203,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.27,
|
67 |
+
"learning_rate": 4.158536682873821e-05,
|
68 |
+
"loss": 0.0172,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.3,
|
73 |
+
"learning_rate": 3.994654029322313e-05,
|
74 |
+
"loss": 0.0241,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.32,
|
79 |
+
"learning_rate": 3.8200948408864986e-05,
|
80 |
+
"loss": 0.0167,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.35,
|
85 |
+
"learning_rate": 3.636106019677602e-05,
|
86 |
+
"loss": 0.0134,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.38,
|
91 |
+
"learning_rate": 3.4440018250689767e-05,
|
92 |
+
"loss": 0.0145,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.4,
|
97 |
+
"learning_rate": 3.2451544857469436e-05,
|
98 |
+
"loss": 0.0127,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.43,
|
103 |
+
"learning_rate": 3.040984397678245e-05,
|
104 |
+
"loss": 0.0164,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.46,
|
109 |
+
"learning_rate": 2.8329499780114865e-05,
|
110 |
+
"loss": 0.0187,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.48,
|
115 |
+
"learning_rate": 2.6225372473876565e-05,
|
116 |
+
"loss": 0.0147,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.51,
|
121 |
+
"learning_rate": 2.41124921507481e-05,
|
122 |
+
"loss": 0.0156,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.54,
|
127 |
+
"learning_rate": 2.2005951427504784e-05,
|
128 |
+
"loss": 0.0184,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.57,
|
133 |
+
"learning_rate": 1.9920797636221933e-05,
|
134 |
+
"loss": 0.0119,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.59,
|
139 |
+
"learning_rate": 1.7871925338955412e-05,
|
140 |
+
"loss": 0.0144,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.62,
|
145 |
+
"learning_rate": 1.5873969933681e-05,
|
146 |
+
"loss": 0.0124,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.65,
|
151 |
+
"learning_rate": 1.3941203111481194e-05,
|
152 |
+
"loss": 0.0129,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.67,
|
157 |
+
"learning_rate": 1.2087430911744144e-05,
|
158 |
+
"loss": 0.0067,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.7,
|
163 |
+
"learning_rate": 1.0325895103581462e-05,
|
164 |
+
"loss": 0.0161,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.73,
|
169 |
+
"learning_rate": 8.669178597912217e-06,
|
170 |
+
"loss": 0.0124,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.75,
|
175 |
+
"learning_rate": 7.129115565868463e-06,
|
176 |
+
"loss": 0.0161,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.78,
|
181 |
+
"learning_rate": 5.716706905559768e-06,
|
182 |
+
"loss": 0.0145,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.81,
|
187 |
+
"learning_rate": 4.4420416610303325e-06,
|
188 |
+
"loss": 0.0088,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.83,
|
193 |
+
"learning_rate": 3.314224954724593e-06,
|
194 |
+
"loss": 0.0124,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.86,
|
199 |
+
"learning_rate": 2.341312948250349e-06,
|
200 |
+
"loss": 0.0154,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.89,
|
205 |
+
"learning_rate": 1.5302552960244022e-06,
|
206 |
+
"loss": 0.0161,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.91,
|
211 |
+
"learning_rate": 8.868455028627959e-07,
|
212 |
+
"loss": 0.0118,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.94,
|
217 |
+
"learning_rate": 4.156795401186381e-07,
|
218 |
+
"loss": 0.0067,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.97,
|
223 |
+
"learning_rate": 1.2012301597874863e-07,
|
224 |
+
"loss": 0.0096,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.0,
|
229 |
+
"learning_rate": 2.2871344263597496e-09,
|
230 |
+
"loss": 0.0113,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 1.0,
|
235 |
+
"step": 3716,
|
236 |
+
"total_flos": 3.0689685240938496e+17,
|
237 |
+
"train_loss": 0.09819089700903973,
|
238 |
+
"train_runtime": 7694.3429,
|
239 |
+
"train_samples_per_second": 15.456,
|
240 |
+
"train_steps_per_second": 0.483
|
241 |
+
}
|
242 |
+
],
|
243 |
+
"logging_steps": 100,
|
244 |
+
"max_steps": 3716,
|
245 |
+
"num_train_epochs": 1,
|
246 |
+
"save_steps": 1000,
|
247 |
+
"total_flos": 3.0689685240938496e+17,
|
248 |
+
"trial_name": null,
|
249 |
+
"trial_params": null
|
250 |
+
}
|
LLM-Detector-V4-11w/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bc4e49fff68420e89c2879345b8b8f748c6b8c4a56351c173150f7352012454
|
3 |
+
size 4664
|
LLM-Detector-V4-11w/training_loss.png
ADDED