wangrongsheng commited on
Commit
7260f6d
·
verified ·
1 Parent(s): 25f59b9

Upload 89 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. LLM-Detector-V7-11w/README.md +59 -0
  2. LLM-Detector-V7-11w/adapter_config.json +26 -0
  3. LLM-Detector-V7-11w/adapter_model.safetensors +3 -0
  4. LLM-Detector-V7-11w/all_results.json +7 -0
  5. LLM-Detector-V7-11w/checkpoint-12000/README.md +204 -0
  6. LLM-Detector-V7-11w/checkpoint-12000/adapter_config.json +26 -0
  7. LLM-Detector-V7-11w/checkpoint-12000/adapter_model.safetensors +3 -0
  8. LLM-Detector-V7-11w/checkpoint-12000/optimizer.pt +3 -0
  9. LLM-Detector-V7-11w/checkpoint-12000/rng_state.pth +3 -0
  10. LLM-Detector-V7-11w/checkpoint-12000/scheduler.pt +3 -0
  11. LLM-Detector-V7-11w/checkpoint-12000/special_tokens_map.json +24 -0
  12. LLM-Detector-V7-11w/checkpoint-12000/tokenizer.model +3 -0
  13. LLM-Detector-V7-11w/checkpoint-12000/tokenizer_config.json +45 -0
  14. LLM-Detector-V7-11w/checkpoint-12000/trainer_state.json +741 -0
  15. LLM-Detector-V7-11w/checkpoint-12000/training_args.bin +3 -0
  16. LLM-Detector-V7-11w/checkpoint-15000/README.md +204 -0
  17. LLM-Detector-V7-11w/checkpoint-15000/adapter_config.json +26 -0
  18. LLM-Detector-V7-11w/checkpoint-15000/adapter_model.safetensors +3 -0
  19. LLM-Detector-V7-11w/checkpoint-15000/optimizer.pt +3 -0
  20. LLM-Detector-V7-11w/checkpoint-15000/rng_state.pth +3 -0
  21. LLM-Detector-V7-11w/checkpoint-15000/scheduler.pt +3 -0
  22. LLM-Detector-V7-11w/checkpoint-15000/special_tokens_map.json +24 -0
  23. LLM-Detector-V7-11w/checkpoint-15000/tokenizer.model +3 -0
  24. LLM-Detector-V7-11w/checkpoint-15000/tokenizer_config.json +45 -0
  25. LLM-Detector-V7-11w/checkpoint-15000/trainer_state.json +921 -0
  26. LLM-Detector-V7-11w/checkpoint-15000/training_args.bin +3 -0
  27. LLM-Detector-V7-11w/checkpoint-18000/README.md +204 -0
  28. LLM-Detector-V7-11w/checkpoint-18000/adapter_config.json +26 -0
  29. LLM-Detector-V7-11w/checkpoint-18000/adapter_model.safetensors +3 -0
  30. LLM-Detector-V7-11w/checkpoint-18000/optimizer.pt +3 -0
  31. LLM-Detector-V7-11w/checkpoint-18000/rng_state.pth +3 -0
  32. LLM-Detector-V7-11w/checkpoint-18000/scheduler.pt +3 -0
  33. LLM-Detector-V7-11w/checkpoint-18000/special_tokens_map.json +24 -0
  34. LLM-Detector-V7-11w/checkpoint-18000/tokenizer.model +3 -0
  35. LLM-Detector-V7-11w/checkpoint-18000/tokenizer_config.json +45 -0
  36. LLM-Detector-V7-11w/checkpoint-18000/trainer_state.json +1101 -0
  37. LLM-Detector-V7-11w/checkpoint-18000/training_args.bin +3 -0
  38. LLM-Detector-V7-11w/checkpoint-21000/README.md +204 -0
  39. LLM-Detector-V7-11w/checkpoint-21000/adapter_config.json +26 -0
  40. LLM-Detector-V7-11w/checkpoint-21000/adapter_model.safetensors +3 -0
  41. LLM-Detector-V7-11w/checkpoint-21000/optimizer.pt +3 -0
  42. LLM-Detector-V7-11w/checkpoint-21000/rng_state.pth +3 -0
  43. LLM-Detector-V7-11w/checkpoint-21000/scheduler.pt +3 -0
  44. LLM-Detector-V7-11w/checkpoint-21000/special_tokens_map.json +24 -0
  45. LLM-Detector-V7-11w/checkpoint-21000/tokenizer.model +3 -0
  46. LLM-Detector-V7-11w/checkpoint-21000/tokenizer_config.json +45 -0
  47. LLM-Detector-V7-11w/checkpoint-21000/trainer_state.json +1281 -0
  48. LLM-Detector-V7-11w/checkpoint-21000/training_args.bin +3 -0
  49. LLM-Detector-V7-11w/checkpoint-3000/README.md +204 -0
  50. LLM-Detector-V7-11w/checkpoint-3000/adapter_config.json +26 -0
LLM-Detector-V7-11w/README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ library_name: peft
4
+ tags:
5
+ - llama-factory
6
+ - lora
7
+ - generated_from_trainer
8
+ base_model: ./Mistral-7B-Instruct-v0.1
9
+ model-index:
10
+ - name: mistral-7b
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # mistral-7b
18
+
19
+ This model is a fine-tuned version of [./Mistral-7B-Instruct-v0.1](https://huggingface.co/./Mistral-7B-Instruct-v0.1) on the ta, the tb, the tc, the td, the te, the tf, the tg and the th datasets.
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 5e-05
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 8
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 4
43
+ - total_train_batch_size: 16
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: cosine
46
+ - num_epochs: 3.0
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+
52
+
53
+ ### Framework versions
54
+
55
+ - PEFT 0.7.1
56
+ - Transformers 4.36.2
57
+ - Pytorch 2.1.1+cu121
58
+ - Datasets 2.15.0
59
+ - Tokenizers 0.15.0
LLM-Detector-V7-11w/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
LLM-Detector-V7-11w/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ef38e97e8cb42bf27d3c049d2ecf7d6080586fa7d9ea1080a54cf3e9e124d01
3
+ size 13648432
LLM-Detector-V7-11w/all_results.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 3.0,
3
+ "train_loss": 0.016247458042738187,
4
+ "train_runtime": 104237.6159,
5
+ "train_samples_per_second": 3.423,
6
+ "train_steps_per_second": 0.214
7
+ }
LLM-Detector-V7-11w/checkpoint-12000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./Mistral-7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
LLM-Detector-V7-11w/checkpoint-12000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
LLM-Detector-V7-11w/checkpoint-12000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ec1db537a3e6619f4f8b0f3ec9fa8c801b1bbdcfcb0fd4fbdd42cc3f37ae8cb
3
+ size 13648432
LLM-Detector-V7-11w/checkpoint-12000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3102c6d70788dd7b7b1a4602722ca63d798825e3706e7c4e8e27e8ccb59b34f5
3
+ size 27370618
LLM-Detector-V7-11w/checkpoint-12000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d138cfe3a4adf21f048848ee35837c9a757a0a3616ff7adbb45b69aac247435
3
+ size 14244
LLM-Detector-V7-11w/checkpoint-12000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d7ab9123dfbc4d7eb2776a2ae4bbfc0564c92aaba8d9ced3be98abb280f5b5b
3
+ size 1064
LLM-Detector-V7-11w/checkpoint-12000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
LLM-Detector-V7-11w/checkpoint-12000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
LLM-Detector-V7-11w/checkpoint-12000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
LLM-Detector-V7-11w/checkpoint-12000/trainer_state.json ADDED
@@ -0,0 +1,741 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.6144764723689078,
5
+ "eval_steps": 500,
6
+ "global_step": 12000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.9997567688496474e-05,
14
+ "loss": 1.6283,
15
+ "step": 100
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.9990172715142793e-05,
20
+ "loss": 0.068,
21
+ "step": 200
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.997781629993153e-05,
26
+ "loss": 0.0404,
27
+ "step": 300
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4.9960500896052476e-05,
32
+ "loss": 0.0626,
33
+ "step": 400
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.993822994123172e-05,
38
+ "loss": 0.0428,
39
+ "step": 500
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9911007857049264e-05,
44
+ "loss": 0.0265,
45
+ "step": 600
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 4.987884004806111e-05,
50
+ "loss": 0.0263,
51
+ "step": 700
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.984173290072626e-05,
56
+ "loss": 0.03,
57
+ "step": 800
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.979969378213884e-05,
62
+ "loss": 0.0253,
63
+ "step": 900
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 4.975273103856537e-05,
68
+ "loss": 0.038,
69
+ "step": 1000
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.970085399378785e-05,
74
+ "loss": 0.0322,
75
+ "step": 1100
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 4.964407294725254e-05,
80
+ "loss": 0.0296,
81
+ "step": 1200
82
+ },
83
+ {
84
+ "epoch": 0.17,
85
+ "learning_rate": 4.958239917202523e-05,
86
+ "loss": 0.0295,
87
+ "step": 1300
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.9515844912553106e-05,
92
+ "loss": 0.0171,
93
+ "step": 1400
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 4.944442338223378e-05,
98
+ "loss": 0.0205,
99
+ "step": 1500
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 4.9368148760792e-05,
104
+ "loss": 0.029,
105
+ "step": 1600
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.9287036191464414e-05,
110
+ "loss": 0.0172,
111
+ "step": 1700
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 4.9201101777993116e-05,
116
+ "loss": 0.0235,
117
+ "step": 1800
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 4.911036258142853e-05,
122
+ "loss": 0.0168,
123
+ "step": 1900
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 4.9014836616742065e-05,
128
+ "loss": 0.0227,
129
+ "step": 2000
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 4.891454284924965e-05,
134
+ "loss": 0.0227,
135
+ "step": 2100
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 4.8810575041794e-05,
140
+ "loss": 0.0173,
141
+ "step": 2200
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 4.8700853511049656e-05,
146
+ "loss": 0.0227,
147
+ "step": 2300
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 4.858642651436035e-05,
152
+ "loss": 0.0144,
153
+ "step": 2400
154
+ },
155
+ {
156
+ "epoch": 0.34,
157
+ "learning_rate": 4.846731676957191e-05,
158
+ "loss": 0.03,
159
+ "step": 2500
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 4.834354792422293e-05,
164
+ "loss": 0.0189,
165
+ "step": 2600
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 4.821514455084985e-05,
170
+ "loss": 0.0111,
171
+ "step": 2700
172
+ },
173
+ {
174
+ "epoch": 0.38,
175
+ "learning_rate": 4.8082132142108465e-05,
176
+ "loss": 0.0152,
177
+ "step": 2800
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 4.794453710571272e-05,
182
+ "loss": 0.0182,
183
+ "step": 2900
184
+ },
185
+ {
186
+ "epoch": 0.4,
187
+ "learning_rate": 4.780238675919182e-05,
188
+ "loss": 0.0111,
189
+ "step": 3000
190
+ },
191
+ {
192
+ "epoch": 0.42,
193
+ "learning_rate": 4.765570932446672e-05,
194
+ "loss": 0.0138,
195
+ "step": 3100
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 4.75045339222471e-05,
200
+ "loss": 0.0256,
201
+ "step": 3200
202
+ },
203
+ {
204
+ "epoch": 0.44,
205
+ "learning_rate": 4.734889056624983e-05,
206
+ "loss": 0.0199,
207
+ "step": 3300
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 4.718881015724017e-05,
212
+ "loss": 0.0159,
213
+ "step": 3400
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 4.702432447689692e-05,
218
+ "loss": 0.0121,
219
+ "step": 3500
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "learning_rate": 4.6855466181502544e-05,
224
+ "loss": 0.0181,
225
+ "step": 3600
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 4.66822687954598e-05,
230
+ "loss": 0.0148,
231
+ "step": 3700
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 4.65047667046359e-05,
236
+ "loss": 0.0152,
237
+ "step": 3800
238
+ },
239
+ {
240
+ "epoch": 0.52,
241
+ "learning_rate": 4.632299514953571e-05,
242
+ "loss": 0.0103,
243
+ "step": 3900
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 4.613699021830524e-05,
248
+ "loss": 0.0217,
249
+ "step": 4000
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 4.59467888395669e-05,
254
+ "loss": 0.0142,
255
+ "step": 4100
256
+ },
257
+ {
258
+ "epoch": 0.57,
259
+ "learning_rate": 4.575242877508777e-05,
260
+ "loss": 0.0151,
261
+ "step": 4200
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 4.5553948612282607e-05,
266
+ "loss": 0.0164,
267
+ "step": 4300
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 4.5353433433160075e-05,
272
+ "loss": 0.0095,
273
+ "step": 4400
274
+ },
275
+ {
276
+ "epoch": 0.61,
277
+ "learning_rate": 4.514687230313633e-05,
278
+ "loss": 0.015,
279
+ "step": 4500
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 4.49363112993749e-05,
284
+ "loss": 0.015,
285
+ "step": 4600
286
+ },
287
+ {
288
+ "epoch": 0.63,
289
+ "learning_rate": 4.472179222575561e-05,
290
+ "loss": 0.0181,
291
+ "step": 4700
292
+ },
293
+ {
294
+ "epoch": 0.65,
295
+ "learning_rate": 4.4503357671976574e-05,
296
+ "loss": 0.0175,
297
+ "step": 4800
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 4.428105100509852e-05,
302
+ "loss": 0.0069,
303
+ "step": 4900
304
+ },
305
+ {
306
+ "epoch": 0.67,
307
+ "learning_rate": 4.4054916360934957e-05,
308
+ "loss": 0.0108,
309
+ "step": 5000
310
+ },
311
+ {
312
+ "epoch": 0.69,
313
+ "learning_rate": 4.3824998635289594e-05,
314
+ "loss": 0.0204,
315
+ "step": 5100
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 4.3591343475042946e-05,
320
+ "loss": 0.0192,
321
+ "step": 5200
322
+ },
323
+ {
324
+ "epoch": 0.71,
325
+ "learning_rate": 4.3353997269089774e-05,
326
+ "loss": 0.0086,
327
+ "step": 5300
328
+ },
329
+ {
330
+ "epoch": 0.73,
331
+ "learning_rate": 4.311300713912926e-05,
332
+ "loss": 0.0179,
333
+ "step": 5400
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 4.286842093030963e-05,
338
+ "loss": 0.0142,
339
+ "step": 5500
340
+ },
341
+ {
342
+ "epoch": 0.75,
343
+ "learning_rate": 4.262028720172921e-05,
344
+ "loss": 0.0187,
345
+ "step": 5600
346
+ },
347
+ {
348
+ "epoch": 0.77,
349
+ "learning_rate": 4.2368655216795735e-05,
350
+ "loss": 0.0176,
351
+ "step": 5700
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 4.211357493344573e-05,
356
+ "loss": 0.0145,
357
+ "step": 5800
358
+ },
359
+ {
360
+ "epoch": 0.79,
361
+ "learning_rate": 4.185509699422615e-05,
362
+ "loss": 0.0087,
363
+ "step": 5900
364
+ },
365
+ {
366
+ "epoch": 0.81,
367
+ "learning_rate": 4.1593272716239985e-05,
368
+ "loss": 0.0136,
369
+ "step": 6000
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 4.132815408095797e-05,
374
+ "loss": 0.0137,
375
+ "step": 6100
376
+ },
377
+ {
378
+ "epoch": 0.83,
379
+ "learning_rate": 4.105979372389847e-05,
380
+ "loss": 0.011,
381
+ "step": 6200
382
+ },
383
+ {
384
+ "epoch": 0.85,
385
+ "learning_rate": 4.0788244924177365e-05,
386
+ "loss": 0.024,
387
+ "step": 6300
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 4.0513561593930325e-05,
392
+ "loss": 0.0067,
393
+ "step": 6400
394
+ },
395
+ {
396
+ "epoch": 0.87,
397
+ "learning_rate": 4.023579826760924e-05,
398
+ "loss": 0.0102,
399
+ "step": 6500
400
+ },
401
+ {
402
+ "epoch": 0.89,
403
+ "learning_rate": 3.995501009115527e-05,
404
+ "loss": 0.013,
405
+ "step": 6600
406
+ },
407
+ {
408
+ "epoch": 0.9,
409
+ "learning_rate": 3.9674104896418544e-05,
410
+ "loss": 0.0133,
411
+ "step": 6700
412
+ },
413
+ {
414
+ "epoch": 0.91,
415
+ "learning_rate": 3.9387463695523555e-05,
416
+ "loss": 0.0087,
417
+ "step": 6800
418
+ },
419
+ {
420
+ "epoch": 0.93,
421
+ "learning_rate": 3.9097966069208193e-05,
422
+ "loss": 0.01,
423
+ "step": 6900
424
+ },
425
+ {
426
+ "epoch": 0.94,
427
+ "learning_rate": 3.880566949309125e-05,
428
+ "loss": 0.0113,
429
+ "step": 7000
430
+ },
431
+ {
432
+ "epoch": 0.96,
433
+ "learning_rate": 3.8513595749088484e-05,
434
+ "loss": 0.0101,
435
+ "step": 7100
436
+ },
437
+ {
438
+ "epoch": 0.97,
439
+ "learning_rate": 3.821590244319273e-05,
440
+ "loss": 0.0092,
441
+ "step": 7200
442
+ },
443
+ {
444
+ "epoch": 0.98,
445
+ "learning_rate": 3.791558530862982e-05,
446
+ "loss": 0.0176,
447
+ "step": 7300
448
+ },
449
+ {
450
+ "epoch": 1.0,
451
+ "learning_rate": 3.76127039690774e-05,
452
+ "loss": 0.0114,
453
+ "step": 7400
454
+ },
455
+ {
456
+ "epoch": 1.01,
457
+ "learning_rate": 3.7307318557299355e-05,
458
+ "loss": 0.0083,
459
+ "step": 7500
460
+ },
461
+ {
462
+ "epoch": 1.02,
463
+ "learning_rate": 3.699948970320738e-05,
464
+ "loss": 0.0067,
465
+ "step": 7600
466
+ },
467
+ {
468
+ "epoch": 1.04,
469
+ "learning_rate": 3.668927852182374e-05,
470
+ "loss": 0.0021,
471
+ "step": 7700
472
+ },
473
+ {
474
+ "epoch": 1.05,
475
+ "learning_rate": 3.637674660114774e-05,
476
+ "loss": 0.0087,
477
+ "step": 7800
478
+ },
479
+ {
480
+ "epoch": 1.06,
481
+ "learning_rate": 3.606195598992832e-05,
482
+ "loss": 0.005,
483
+ "step": 7900
484
+ },
485
+ {
486
+ "epoch": 1.08,
487
+ "learning_rate": 3.574496918534519e-05,
488
+ "loss": 0.014,
489
+ "step": 8000
490
+ },
491
+ {
492
+ "epoch": 1.09,
493
+ "learning_rate": 3.542584912060087e-05,
494
+ "loss": 0.0073,
495
+ "step": 8100
496
+ },
497
+ {
498
+ "epoch": 1.1,
499
+ "learning_rate": 3.510465915242623e-05,
500
+ "loss": 0.0073,
501
+ "step": 8200
502
+ },
503
+ {
504
+ "epoch": 1.12,
505
+ "learning_rate": 3.478146304850188e-05,
506
+ "loss": 0.0106,
507
+ "step": 8300
508
+ },
509
+ {
510
+ "epoch": 1.13,
511
+ "learning_rate": 3.4456324974798025e-05,
512
+ "loss": 0.0106,
513
+ "step": 8400
514
+ },
515
+ {
516
+ "epoch": 1.14,
517
+ "learning_rate": 3.412930948283528e-05,
518
+ "loss": 0.0036,
519
+ "step": 8500
520
+ },
521
+ {
522
+ "epoch": 1.16,
523
+ "learning_rate": 3.380048149686877e-05,
524
+ "loss": 0.0051,
525
+ "step": 8600
526
+ },
527
+ {
528
+ "epoch": 1.17,
529
+ "learning_rate": 3.3469906300998476e-05,
530
+ "loss": 0.0047,
531
+ "step": 8700
532
+ },
533
+ {
534
+ "epoch": 1.18,
535
+ "learning_rate": 3.313764952620792e-05,
536
+ "loss": 0.0035,
537
+ "step": 8800
538
+ },
539
+ {
540
+ "epoch": 1.2,
541
+ "learning_rate": 3.280377713733412e-05,
542
+ "loss": 0.0094,
543
+ "step": 8900
544
+ },
545
+ {
546
+ "epoch": 1.21,
547
+ "learning_rate": 3.246835541997116e-05,
548
+ "loss": 0.0077,
549
+ "step": 9000
550
+ },
551
+ {
552
+ "epoch": 1.22,
553
+ "learning_rate": 3.213145096731021e-05,
554
+ "loss": 0.0076,
555
+ "step": 9100
556
+ },
557
+ {
558
+ "epoch": 1.24,
559
+ "learning_rate": 3.1793130666918324e-05,
560
+ "loss": 0.0074,
561
+ "step": 9200
562
+ },
563
+ {
564
+ "epoch": 1.25,
565
+ "learning_rate": 3.145346168745891e-05,
566
+ "loss": 0.0072,
567
+ "step": 9300
568
+ },
569
+ {
570
+ "epoch": 1.26,
571
+ "learning_rate": 3.111251146535634e-05,
572
+ "loss": 0.0043,
573
+ "step": 9400
574
+ },
575
+ {
576
+ "epoch": 1.28,
577
+ "learning_rate": 3.077377511336779e-05,
578
+ "loss": 0.0071,
579
+ "step": 9500
580
+ },
581
+ {
582
+ "epoch": 1.29,
583
+ "learning_rate": 3.043047683848379e-05,
584
+ "loss": 0.0102,
585
+ "step": 9600
586
+ },
587
+ {
588
+ "epoch": 1.31,
589
+ "learning_rate": 3.0086100419987084e-05,
590
+ "loss": 0.005,
591
+ "step": 9700
592
+ },
593
+ {
594
+ "epoch": 1.32,
595
+ "learning_rate": 2.974071422889685e-05,
596
+ "loss": 0.0155,
597
+ "step": 9800
598
+ },
599
+ {
600
+ "epoch": 1.33,
601
+ "learning_rate": 2.9394386836708154e-05,
602
+ "loss": 0.0086,
603
+ "step": 9900
604
+ },
605
+ {
606
+ "epoch": 1.35,
607
+ "learning_rate": 2.9047187001778132e-05,
608
+ "loss": 0.0048,
609
+ "step": 10000
610
+ },
611
+ {
612
+ "epoch": 1.36,
613
+ "learning_rate": 2.8699183655674938e-05,
614
+ "loss": 0.0085,
615
+ "step": 10100
616
+ },
617
+ {
618
+ "epoch": 1.37,
619
+ "learning_rate": 2.835044588949241e-05,
620
+ "loss": 0.0091,
621
+ "step": 10200
622
+ },
623
+ {
624
+ "epoch": 1.39,
625
+ "learning_rate": 2.8001042940132995e-05,
626
+ "loss": 0.0089,
627
+ "step": 10300
628
+ },
629
+ {
630
+ "epoch": 1.4,
631
+ "learning_rate": 2.7651044176561748e-05,
632
+ "loss": 0.0093,
633
+ "step": 10400
634
+ },
635
+ {
636
+ "epoch": 1.41,
637
+ "learning_rate": 2.7300519086034166e-05,
638
+ "loss": 0.0073,
639
+ "step": 10500
640
+ },
641
+ {
642
+ "epoch": 1.43,
643
+ "learning_rate": 2.6949537260300395e-05,
644
+ "loss": 0.0029,
645
+ "step": 10600
646
+ },
647
+ {
648
+ "epoch": 1.44,
649
+ "learning_rate": 2.6598168381788864e-05,
650
+ "loss": 0.0027,
651
+ "step": 10700
652
+ },
653
+ {
654
+ "epoch": 1.45,
655
+ "learning_rate": 2.6246482209771783e-05,
656
+ "loss": 0.011,
657
+ "step": 10800
658
+ },
659
+ {
660
+ "epoch": 1.47,
661
+ "learning_rate": 2.5894548566515485e-05,
662
+ "loss": 0.0108,
663
+ "step": 10900
664
+ },
665
+ {
666
+ "epoch": 1.48,
667
+ "learning_rate": 2.554243732341816e-05,
668
+ "loss": 0.0033,
669
+ "step": 11000
670
+ },
671
+ {
672
+ "epoch": 1.49,
673
+ "learning_rate": 2.519021838713791e-05,
674
+ "loss": 0.0048,
675
+ "step": 11100
676
+ },
677
+ {
678
+ "epoch": 1.51,
679
+ "learning_rate": 2.483796168571378e-05,
680
+ "loss": 0.0015,
681
+ "step": 11200
682
+ },
683
+ {
684
+ "epoch": 1.52,
685
+ "learning_rate": 2.4485737154682554e-05,
686
+ "loss": 0.0053,
687
+ "step": 11300
688
+ },
689
+ {
690
+ "epoch": 1.53,
691
+ "learning_rate": 2.4133614723194047e-05,
692
+ "loss": 0.0043,
693
+ "step": 11400
694
+ },
695
+ {
696
+ "epoch": 1.55,
697
+ "learning_rate": 2.378166430012766e-05,
698
+ "loss": 0.0086,
699
+ "step": 11500
700
+ },
701
+ {
702
+ "epoch": 1.56,
703
+ "learning_rate": 2.3429955760212966e-05,
704
+ "loss": 0.0077,
705
+ "step": 11600
706
+ },
707
+ {
708
+ "epoch": 1.57,
709
+ "learning_rate": 2.307855893015712e-05,
710
+ "loss": 0.0066,
711
+ "step": 11700
712
+ },
713
+ {
714
+ "epoch": 1.59,
715
+ "learning_rate": 2.272754357478172e-05,
716
+ "loss": 0.0055,
717
+ "step": 11800
718
+ },
719
+ {
720
+ "epoch": 1.6,
721
+ "learning_rate": 2.237697938317202e-05,
722
+ "loss": 0.0067,
723
+ "step": 11900
724
+ },
725
+ {
726
+ "epoch": 1.61,
727
+ "learning_rate": 2.202693595484113e-05,
728
+ "loss": 0.0082,
729
+ "step": 12000
730
+ }
731
+ ],
732
+ "logging_steps": 100,
733
+ "max_steps": 22296,
734
+ "num_input_tokens_seen": 0,
735
+ "num_train_epochs": 3,
736
+ "save_steps": 3000,
737
+ "total_flos": 3.353181220065116e+18,
738
+ "train_batch_size": 4,
739
+ "trial_name": null,
740
+ "trial_params": null
741
+ }
LLM-Detector-V7-11w/checkpoint-12000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda912c16bf2c6e8ac3158b354c96cabf8fd0eff786de104f90c23c31741ef25
3
+ size 4856
LLM-Detector-V7-11w/checkpoint-15000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./Mistral-7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
LLM-Detector-V7-11w/checkpoint-15000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
LLM-Detector-V7-11w/checkpoint-15000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac3d2109fc70a6c1b59c702cb431bca4f25ceaff721b1e0d8075f9793a35ff88
3
+ size 13648432
LLM-Detector-V7-11w/checkpoint-15000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffcc1773551890f9dac6bd1dc923b435d8c12078e0caaf83ab93f5a0f0e05a0f
3
+ size 27370618
LLM-Detector-V7-11w/checkpoint-15000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c062f7f375beded48b5337f5a3f3a5cb38807fa3e85dbf3e294c0ab6b627bfc2
3
+ size 14244
LLM-Detector-V7-11w/checkpoint-15000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0933c07370bc6a7583e4fef9f3016715d1c88ece3b281fe4985af206b423756e
3
+ size 1064
LLM-Detector-V7-11w/checkpoint-15000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
LLM-Detector-V7-11w/checkpoint-15000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
LLM-Detector-V7-11w/checkpoint-15000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
LLM-Detector-V7-11w/checkpoint-15000/trainer_state.json ADDED
@@ -0,0 +1,921 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.018095590461135,
5
+ "eval_steps": 500,
6
+ "global_step": 15000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.9997567688496474e-05,
14
+ "loss": 1.6283,
15
+ "step": 100
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.9990172715142793e-05,
20
+ "loss": 0.068,
21
+ "step": 200
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.997781629993153e-05,
26
+ "loss": 0.0404,
27
+ "step": 300
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4.9960500896052476e-05,
32
+ "loss": 0.0626,
33
+ "step": 400
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.993822994123172e-05,
38
+ "loss": 0.0428,
39
+ "step": 500
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9911007857049264e-05,
44
+ "loss": 0.0265,
45
+ "step": 600
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 4.987884004806111e-05,
50
+ "loss": 0.0263,
51
+ "step": 700
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.984173290072626e-05,
56
+ "loss": 0.03,
57
+ "step": 800
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.979969378213884e-05,
62
+ "loss": 0.0253,
63
+ "step": 900
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 4.975273103856537e-05,
68
+ "loss": 0.038,
69
+ "step": 1000
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.970085399378785e-05,
74
+ "loss": 0.0322,
75
+ "step": 1100
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 4.964407294725254e-05,
80
+ "loss": 0.0296,
81
+ "step": 1200
82
+ },
83
+ {
84
+ "epoch": 0.17,
85
+ "learning_rate": 4.958239917202523e-05,
86
+ "loss": 0.0295,
87
+ "step": 1300
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.9515844912553106e-05,
92
+ "loss": 0.0171,
93
+ "step": 1400
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 4.944442338223378e-05,
98
+ "loss": 0.0205,
99
+ "step": 1500
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 4.9368148760792e-05,
104
+ "loss": 0.029,
105
+ "step": 1600
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.9287036191464414e-05,
110
+ "loss": 0.0172,
111
+ "step": 1700
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 4.9201101777993116e-05,
116
+ "loss": 0.0235,
117
+ "step": 1800
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 4.911036258142853e-05,
122
+ "loss": 0.0168,
123
+ "step": 1900
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 4.9014836616742065e-05,
128
+ "loss": 0.0227,
129
+ "step": 2000
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 4.891454284924965e-05,
134
+ "loss": 0.0227,
135
+ "step": 2100
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 4.8810575041794e-05,
140
+ "loss": 0.0173,
141
+ "step": 2200
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 4.8700853511049656e-05,
146
+ "loss": 0.0227,
147
+ "step": 2300
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 4.858642651436035e-05,
152
+ "loss": 0.0144,
153
+ "step": 2400
154
+ },
155
+ {
156
+ "epoch": 0.34,
157
+ "learning_rate": 4.846731676957191e-05,
158
+ "loss": 0.03,
159
+ "step": 2500
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 4.834354792422293e-05,
164
+ "loss": 0.0189,
165
+ "step": 2600
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 4.821514455084985e-05,
170
+ "loss": 0.0111,
171
+ "step": 2700
172
+ },
173
+ {
174
+ "epoch": 0.38,
175
+ "learning_rate": 4.8082132142108465e-05,
176
+ "loss": 0.0152,
177
+ "step": 2800
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 4.794453710571272e-05,
182
+ "loss": 0.0182,
183
+ "step": 2900
184
+ },
185
+ {
186
+ "epoch": 0.4,
187
+ "learning_rate": 4.780238675919182e-05,
188
+ "loss": 0.0111,
189
+ "step": 3000
190
+ },
191
+ {
192
+ "epoch": 0.42,
193
+ "learning_rate": 4.765570932446672e-05,
194
+ "loss": 0.0138,
195
+ "step": 3100
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 4.75045339222471e-05,
200
+ "loss": 0.0256,
201
+ "step": 3200
202
+ },
203
+ {
204
+ "epoch": 0.44,
205
+ "learning_rate": 4.734889056624983e-05,
206
+ "loss": 0.0199,
207
+ "step": 3300
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 4.718881015724017e-05,
212
+ "loss": 0.0159,
213
+ "step": 3400
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 4.702432447689692e-05,
218
+ "loss": 0.0121,
219
+ "step": 3500
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "learning_rate": 4.6855466181502544e-05,
224
+ "loss": 0.0181,
225
+ "step": 3600
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 4.66822687954598e-05,
230
+ "loss": 0.0148,
231
+ "step": 3700
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 4.65047667046359e-05,
236
+ "loss": 0.0152,
237
+ "step": 3800
238
+ },
239
+ {
240
+ "epoch": 0.52,
241
+ "learning_rate": 4.632299514953571e-05,
242
+ "loss": 0.0103,
243
+ "step": 3900
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 4.613699021830524e-05,
248
+ "loss": 0.0217,
249
+ "step": 4000
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 4.59467888395669e-05,
254
+ "loss": 0.0142,
255
+ "step": 4100
256
+ },
257
+ {
258
+ "epoch": 0.57,
259
+ "learning_rate": 4.575242877508777e-05,
260
+ "loss": 0.0151,
261
+ "step": 4200
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 4.5553948612282607e-05,
266
+ "loss": 0.0164,
267
+ "step": 4300
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 4.5353433433160075e-05,
272
+ "loss": 0.0095,
273
+ "step": 4400
274
+ },
275
+ {
276
+ "epoch": 0.61,
277
+ "learning_rate": 4.514687230313633e-05,
278
+ "loss": 0.015,
279
+ "step": 4500
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 4.49363112993749e-05,
284
+ "loss": 0.015,
285
+ "step": 4600
286
+ },
287
+ {
288
+ "epoch": 0.63,
289
+ "learning_rate": 4.472179222575561e-05,
290
+ "loss": 0.0181,
291
+ "step": 4700
292
+ },
293
+ {
294
+ "epoch": 0.65,
295
+ "learning_rate": 4.4503357671976574e-05,
296
+ "loss": 0.0175,
297
+ "step": 4800
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 4.428105100509852e-05,
302
+ "loss": 0.0069,
303
+ "step": 4900
304
+ },
305
+ {
306
+ "epoch": 0.67,
307
+ "learning_rate": 4.4054916360934957e-05,
308
+ "loss": 0.0108,
309
+ "step": 5000
310
+ },
311
+ {
312
+ "epoch": 0.69,
313
+ "learning_rate": 4.3824998635289594e-05,
314
+ "loss": 0.0204,
315
+ "step": 5100
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 4.3591343475042946e-05,
320
+ "loss": 0.0192,
321
+ "step": 5200
322
+ },
323
+ {
324
+ "epoch": 0.71,
325
+ "learning_rate": 4.3353997269089774e-05,
326
+ "loss": 0.0086,
327
+ "step": 5300
328
+ },
329
+ {
330
+ "epoch": 0.73,
331
+ "learning_rate": 4.311300713912926e-05,
332
+ "loss": 0.0179,
333
+ "step": 5400
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 4.286842093030963e-05,
338
+ "loss": 0.0142,
339
+ "step": 5500
340
+ },
341
+ {
342
+ "epoch": 0.75,
343
+ "learning_rate": 4.262028720172921e-05,
344
+ "loss": 0.0187,
345
+ "step": 5600
346
+ },
347
+ {
348
+ "epoch": 0.77,
349
+ "learning_rate": 4.2368655216795735e-05,
350
+ "loss": 0.0176,
351
+ "step": 5700
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 4.211357493344573e-05,
356
+ "loss": 0.0145,
357
+ "step": 5800
358
+ },
359
+ {
360
+ "epoch": 0.79,
361
+ "learning_rate": 4.185509699422615e-05,
362
+ "loss": 0.0087,
363
+ "step": 5900
364
+ },
365
+ {
366
+ "epoch": 0.81,
367
+ "learning_rate": 4.1593272716239985e-05,
368
+ "loss": 0.0136,
369
+ "step": 6000
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 4.132815408095797e-05,
374
+ "loss": 0.0137,
375
+ "step": 6100
376
+ },
377
+ {
378
+ "epoch": 0.83,
379
+ "learning_rate": 4.105979372389847e-05,
380
+ "loss": 0.011,
381
+ "step": 6200
382
+ },
383
+ {
384
+ "epoch": 0.85,
385
+ "learning_rate": 4.0788244924177365e-05,
386
+ "loss": 0.024,
387
+ "step": 6300
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 4.0513561593930325e-05,
392
+ "loss": 0.0067,
393
+ "step": 6400
394
+ },
395
+ {
396
+ "epoch": 0.87,
397
+ "learning_rate": 4.023579826760924e-05,
398
+ "loss": 0.0102,
399
+ "step": 6500
400
+ },
401
+ {
402
+ "epoch": 0.89,
403
+ "learning_rate": 3.995501009115527e-05,
404
+ "loss": 0.013,
405
+ "step": 6600
406
+ },
407
+ {
408
+ "epoch": 0.9,
409
+ "learning_rate": 3.9674104896418544e-05,
410
+ "loss": 0.0133,
411
+ "step": 6700
412
+ },
413
+ {
414
+ "epoch": 0.91,
415
+ "learning_rate": 3.9387463695523555e-05,
416
+ "loss": 0.0087,
417
+ "step": 6800
418
+ },
419
+ {
420
+ "epoch": 0.93,
421
+ "learning_rate": 3.9097966069208193e-05,
422
+ "loss": 0.01,
423
+ "step": 6900
424
+ },
425
+ {
426
+ "epoch": 0.94,
427
+ "learning_rate": 3.880566949309125e-05,
428
+ "loss": 0.0113,
429
+ "step": 7000
430
+ },
431
+ {
432
+ "epoch": 0.96,
433
+ "learning_rate": 3.8513595749088484e-05,
434
+ "loss": 0.0101,
435
+ "step": 7100
436
+ },
437
+ {
438
+ "epoch": 0.97,
439
+ "learning_rate": 3.821590244319273e-05,
440
+ "loss": 0.0092,
441
+ "step": 7200
442
+ },
443
+ {
444
+ "epoch": 0.98,
445
+ "learning_rate": 3.791558530862982e-05,
446
+ "loss": 0.0176,
447
+ "step": 7300
448
+ },
449
+ {
450
+ "epoch": 1.0,
451
+ "learning_rate": 3.76127039690774e-05,
452
+ "loss": 0.0114,
453
+ "step": 7400
454
+ },
455
+ {
456
+ "epoch": 1.01,
457
+ "learning_rate": 3.7307318557299355e-05,
458
+ "loss": 0.0083,
459
+ "step": 7500
460
+ },
461
+ {
462
+ "epoch": 1.02,
463
+ "learning_rate": 3.699948970320738e-05,
464
+ "loss": 0.0067,
465
+ "step": 7600
466
+ },
467
+ {
468
+ "epoch": 1.04,
469
+ "learning_rate": 3.668927852182374e-05,
470
+ "loss": 0.0021,
471
+ "step": 7700
472
+ },
473
+ {
474
+ "epoch": 1.05,
475
+ "learning_rate": 3.637674660114774e-05,
476
+ "loss": 0.0087,
477
+ "step": 7800
478
+ },
479
+ {
480
+ "epoch": 1.06,
481
+ "learning_rate": 3.606195598992832e-05,
482
+ "loss": 0.005,
483
+ "step": 7900
484
+ },
485
+ {
486
+ "epoch": 1.08,
487
+ "learning_rate": 3.574496918534519e-05,
488
+ "loss": 0.014,
489
+ "step": 8000
490
+ },
491
+ {
492
+ "epoch": 1.09,
493
+ "learning_rate": 3.542584912060087e-05,
494
+ "loss": 0.0073,
495
+ "step": 8100
496
+ },
497
+ {
498
+ "epoch": 1.1,
499
+ "learning_rate": 3.510465915242623e-05,
500
+ "loss": 0.0073,
501
+ "step": 8200
502
+ },
503
+ {
504
+ "epoch": 1.12,
505
+ "learning_rate": 3.478146304850188e-05,
506
+ "loss": 0.0106,
507
+ "step": 8300
508
+ },
509
+ {
510
+ "epoch": 1.13,
511
+ "learning_rate": 3.4456324974798025e-05,
512
+ "loss": 0.0106,
513
+ "step": 8400
514
+ },
515
+ {
516
+ "epoch": 1.14,
517
+ "learning_rate": 3.412930948283528e-05,
518
+ "loss": 0.0036,
519
+ "step": 8500
520
+ },
521
+ {
522
+ "epoch": 1.16,
523
+ "learning_rate": 3.380048149686877e-05,
524
+ "loss": 0.0051,
525
+ "step": 8600
526
+ },
527
+ {
528
+ "epoch": 1.17,
529
+ "learning_rate": 3.3469906300998476e-05,
530
+ "loss": 0.0047,
531
+ "step": 8700
532
+ },
533
+ {
534
+ "epoch": 1.18,
535
+ "learning_rate": 3.313764952620792e-05,
536
+ "loss": 0.0035,
537
+ "step": 8800
538
+ },
539
+ {
540
+ "epoch": 1.2,
541
+ "learning_rate": 3.280377713733412e-05,
542
+ "loss": 0.0094,
543
+ "step": 8900
544
+ },
545
+ {
546
+ "epoch": 1.21,
547
+ "learning_rate": 3.246835541997116e-05,
548
+ "loss": 0.0077,
549
+ "step": 9000
550
+ },
551
+ {
552
+ "epoch": 1.22,
553
+ "learning_rate": 3.213145096731021e-05,
554
+ "loss": 0.0076,
555
+ "step": 9100
556
+ },
557
+ {
558
+ "epoch": 1.24,
559
+ "learning_rate": 3.1793130666918324e-05,
560
+ "loss": 0.0074,
561
+ "step": 9200
562
+ },
563
+ {
564
+ "epoch": 1.25,
565
+ "learning_rate": 3.145346168745891e-05,
566
+ "loss": 0.0072,
567
+ "step": 9300
568
+ },
569
+ {
570
+ "epoch": 1.26,
571
+ "learning_rate": 3.111251146535634e-05,
572
+ "loss": 0.0043,
573
+ "step": 9400
574
+ },
575
+ {
576
+ "epoch": 1.28,
577
+ "learning_rate": 3.077377511336779e-05,
578
+ "loss": 0.0071,
579
+ "step": 9500
580
+ },
581
+ {
582
+ "epoch": 1.29,
583
+ "learning_rate": 3.043047683848379e-05,
584
+ "loss": 0.0102,
585
+ "step": 9600
586
+ },
587
+ {
588
+ "epoch": 1.31,
589
+ "learning_rate": 3.0086100419987084e-05,
590
+ "loss": 0.005,
591
+ "step": 9700
592
+ },
593
+ {
594
+ "epoch": 1.32,
595
+ "learning_rate": 2.974071422889685e-05,
596
+ "loss": 0.0155,
597
+ "step": 9800
598
+ },
599
+ {
600
+ "epoch": 1.33,
601
+ "learning_rate": 2.9394386836708154e-05,
602
+ "loss": 0.0086,
603
+ "step": 9900
604
+ },
605
+ {
606
+ "epoch": 1.35,
607
+ "learning_rate": 2.9047187001778132e-05,
608
+ "loss": 0.0048,
609
+ "step": 10000
610
+ },
611
+ {
612
+ "epoch": 1.36,
613
+ "learning_rate": 2.8699183655674938e-05,
614
+ "loss": 0.0085,
615
+ "step": 10100
616
+ },
617
+ {
618
+ "epoch": 1.37,
619
+ "learning_rate": 2.835044588949241e-05,
620
+ "loss": 0.0091,
621
+ "step": 10200
622
+ },
623
+ {
624
+ "epoch": 1.39,
625
+ "learning_rate": 2.8001042940132995e-05,
626
+ "loss": 0.0089,
627
+ "step": 10300
628
+ },
629
+ {
630
+ "epoch": 1.4,
631
+ "learning_rate": 2.7651044176561748e-05,
632
+ "loss": 0.0093,
633
+ "step": 10400
634
+ },
635
+ {
636
+ "epoch": 1.41,
637
+ "learning_rate": 2.7300519086034166e-05,
638
+ "loss": 0.0073,
639
+ "step": 10500
640
+ },
641
+ {
642
+ "epoch": 1.43,
643
+ "learning_rate": 2.6949537260300395e-05,
644
+ "loss": 0.0029,
645
+ "step": 10600
646
+ },
647
+ {
648
+ "epoch": 1.44,
649
+ "learning_rate": 2.6598168381788864e-05,
650
+ "loss": 0.0027,
651
+ "step": 10700
652
+ },
653
+ {
654
+ "epoch": 1.45,
655
+ "learning_rate": 2.6246482209771783e-05,
656
+ "loss": 0.011,
657
+ "step": 10800
658
+ },
659
+ {
660
+ "epoch": 1.47,
661
+ "learning_rate": 2.5894548566515485e-05,
662
+ "loss": 0.0108,
663
+ "step": 10900
664
+ },
665
+ {
666
+ "epoch": 1.48,
667
+ "learning_rate": 2.554243732341816e-05,
668
+ "loss": 0.0033,
669
+ "step": 11000
670
+ },
671
+ {
672
+ "epoch": 1.49,
673
+ "learning_rate": 2.519021838713791e-05,
674
+ "loss": 0.0048,
675
+ "step": 11100
676
+ },
677
+ {
678
+ "epoch": 1.51,
679
+ "learning_rate": 2.483796168571378e-05,
680
+ "loss": 0.0015,
681
+ "step": 11200
682
+ },
683
+ {
684
+ "epoch": 1.52,
685
+ "learning_rate": 2.4485737154682554e-05,
686
+ "loss": 0.0053,
687
+ "step": 11300
688
+ },
689
+ {
690
+ "epoch": 1.53,
691
+ "learning_rate": 2.4133614723194047e-05,
692
+ "loss": 0.0043,
693
+ "step": 11400
694
+ },
695
+ {
696
+ "epoch": 1.55,
697
+ "learning_rate": 2.378166430012766e-05,
698
+ "loss": 0.0086,
699
+ "step": 11500
700
+ },
701
+ {
702
+ "epoch": 1.56,
703
+ "learning_rate": 2.3429955760212966e-05,
704
+ "loss": 0.0077,
705
+ "step": 11600
706
+ },
707
+ {
708
+ "epoch": 1.57,
709
+ "learning_rate": 2.307855893015712e-05,
710
+ "loss": 0.0066,
711
+ "step": 11700
712
+ },
713
+ {
714
+ "epoch": 1.59,
715
+ "learning_rate": 2.272754357478172e-05,
716
+ "loss": 0.0055,
717
+ "step": 11800
718
+ },
719
+ {
720
+ "epoch": 1.6,
721
+ "learning_rate": 2.237697938317202e-05,
722
+ "loss": 0.0067,
723
+ "step": 11900
724
+ },
725
+ {
726
+ "epoch": 1.61,
727
+ "learning_rate": 2.202693595484113e-05,
728
+ "loss": 0.0082,
729
+ "step": 12000
730
+ },
731
+ {
732
+ "epoch": 1.63,
733
+ "learning_rate": 2.1680974167907623e-05,
734
+ "loss": 0.0101,
735
+ "step": 12100
736
+ },
737
+ {
738
+ "epoch": 1.64,
739
+ "learning_rate": 2.1332173697925385e-05,
740
+ "loss": 0.0019,
741
+ "step": 12200
742
+ },
743
+ {
744
+ "epoch": 1.65,
745
+ "learning_rate": 2.09841014224678e-05,
746
+ "loss": 0.0106,
747
+ "step": 12300
748
+ },
749
+ {
750
+ "epoch": 1.67,
751
+ "learning_rate": 2.063682644631365e-05,
752
+ "loss": 0.0051,
753
+ "step": 12400
754
+ },
755
+ {
756
+ "epoch": 1.68,
757
+ "learning_rate": 2.0290417715949304e-05,
758
+ "loss": 0.0076,
759
+ "step": 12500
760
+ },
761
+ {
762
+ "epoch": 1.7,
763
+ "learning_rate": 1.994494400588042e-05,
764
+ "loss": 0.0037,
765
+ "step": 12600
766
+ },
767
+ {
768
+ "epoch": 1.71,
769
+ "learning_rate": 1.9600473904977725e-05,
770
+ "loss": 0.0073,
771
+ "step": 12700
772
+ },
773
+ {
774
+ "epoch": 1.72,
775
+ "learning_rate": 1.9257075802859685e-05,
776
+ "loss": 0.0052,
777
+ "step": 12800
778
+ },
779
+ {
780
+ "epoch": 1.74,
781
+ "learning_rate": 1.89148178763147e-05,
782
+ "loss": 0.0038,
783
+ "step": 12900
784
+ },
785
+ {
786
+ "epoch": 1.75,
787
+ "learning_rate": 1.857376807576563e-05,
788
+ "loss": 0.0044,
789
+ "step": 13000
790
+ },
791
+ {
792
+ "epoch": 1.76,
793
+ "learning_rate": 1.8233994111779146e-05,
794
+ "loss": 0.0031,
795
+ "step": 13100
796
+ },
797
+ {
798
+ "epoch": 1.78,
799
+ "learning_rate": 1.7895563441622803e-05,
800
+ "loss": 0.0067,
801
+ "step": 13200
802
+ },
803
+ {
804
+ "epoch": 1.79,
805
+ "learning_rate": 1.7558543255872352e-05,
806
+ "loss": 0.0096,
807
+ "step": 13300
808
+ },
809
+ {
810
+ "epoch": 1.8,
811
+ "learning_rate": 1.7223000465072e-05,
812
+ "loss": 0.0063,
813
+ "step": 13400
814
+ },
815
+ {
816
+ "epoch": 1.82,
817
+ "learning_rate": 1.68890016864503e-05,
818
+ "loss": 0.0064,
819
+ "step": 13500
820
+ },
821
+ {
822
+ "epoch": 1.83,
823
+ "learning_rate": 1.6556613230694243e-05,
824
+ "loss": 0.0047,
825
+ "step": 13600
826
+ },
827
+ {
828
+ "epoch": 1.84,
829
+ "learning_rate": 1.6225901088784207e-05,
830
+ "loss": 0.0023,
831
+ "step": 13700
832
+ },
833
+ {
834
+ "epoch": 1.86,
835
+ "learning_rate": 1.58969309188924e-05,
836
+ "loss": 0.0064,
837
+ "step": 13800
838
+ },
839
+ {
840
+ "epoch": 1.87,
841
+ "learning_rate": 1.556976803334737e-05,
842
+ "loss": 0.004,
843
+ "step": 13900
844
+ },
845
+ {
846
+ "epoch": 1.88,
847
+ "learning_rate": 1.5244477385667167e-05,
848
+ "loss": 0.0016,
849
+ "step": 14000
850
+ },
851
+ {
852
+ "epoch": 1.9,
853
+ "learning_rate": 1.4921123557663763e-05,
854
+ "loss": 0.008,
855
+ "step": 14100
856
+ },
857
+ {
858
+ "epoch": 1.91,
859
+ "learning_rate": 1.4599770746621238e-05,
860
+ "loss": 0.0047,
861
+ "step": 14200
862
+ },
863
+ {
864
+ "epoch": 1.92,
865
+ "learning_rate": 1.4280482752550327e-05,
866
+ "loss": 0.0056,
867
+ "step": 14300
868
+ },
869
+ {
870
+ "epoch": 1.94,
871
+ "learning_rate": 1.396332296552188e-05,
872
+ "loss": 0.0065,
873
+ "step": 14400
874
+ },
875
+ {
876
+ "epoch": 1.95,
877
+ "learning_rate": 1.3648354353081588e-05,
878
+ "loss": 0.004,
879
+ "step": 14500
880
+ },
881
+ {
882
+ "epoch": 1.96,
883
+ "learning_rate": 1.333563944774876e-05,
884
+ "loss": 0.0065,
885
+ "step": 14600
886
+ },
887
+ {
888
+ "epoch": 1.98,
889
+ "learning_rate": 1.3028332659827522e-05,
890
+ "loss": 0.0026,
891
+ "step": 14700
892
+ },
893
+ {
894
+ "epoch": 1.99,
895
+ "learning_rate": 1.2720286886495473e-05,
896
+ "loss": 0.008,
897
+ "step": 14800
898
+ },
899
+ {
900
+ "epoch": 2.0,
901
+ "learning_rate": 1.2414679074810755e-05,
902
+ "loss": 0.0053,
903
+ "step": 14900
904
+ },
905
+ {
906
+ "epoch": 2.02,
907
+ "learning_rate": 1.211156989883942e-05,
908
+ "loss": 0.0024,
909
+ "step": 15000
910
+ }
911
+ ],
912
+ "logging_steps": 100,
913
+ "max_steps": 22296,
914
+ "num_input_tokens_seen": 0,
915
+ "num_train_epochs": 3,
916
+ "save_steps": 3000,
917
+ "total_flos": 4.194822128965386e+18,
918
+ "train_batch_size": 4,
919
+ "trial_name": null,
920
+ "trial_params": null
921
+ }
LLM-Detector-V7-11w/checkpoint-15000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda912c16bf2c6e8ac3158b354c96cabf8fd0eff786de104f90c23c31741ef25
3
+ size 4856
LLM-Detector-V7-11w/checkpoint-18000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./Mistral-7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
LLM-Detector-V7-11w/checkpoint-18000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
LLM-Detector-V7-11w/checkpoint-18000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66bcc6800881908984d073432cdeb920070fd2435379ba34dd7a28847624268d
3
+ size 13648432
LLM-Detector-V7-11w/checkpoint-18000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b3b72fecc266a932e807481578b9027a8e27baaca8eaa2102a6fee9477605bc
3
+ size 27370618
LLM-Detector-V7-11w/checkpoint-18000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c062f7f375beded48b5337f5a3f3a5cb38807fa3e85dbf3e294c0ab6b627bfc2
3
+ size 14244
LLM-Detector-V7-11w/checkpoint-18000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0be9a1e39bd11602ee7b398aebdd574e95624fd6bbb933e2dcc4fdf93be09dc1
3
+ size 1064
LLM-Detector-V7-11w/checkpoint-18000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
LLM-Detector-V7-11w/checkpoint-18000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
LLM-Detector-V7-11w/checkpoint-18000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
LLM-Detector-V7-11w/checkpoint-18000/trainer_state.json ADDED
@@ -0,0 +1,1101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.421714708553362,
5
+ "eval_steps": 500,
6
+ "global_step": 18000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.9997567688496474e-05,
14
+ "loss": 1.6283,
15
+ "step": 100
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.9990172715142793e-05,
20
+ "loss": 0.068,
21
+ "step": 200
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.997781629993153e-05,
26
+ "loss": 0.0404,
27
+ "step": 300
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4.9960500896052476e-05,
32
+ "loss": 0.0626,
33
+ "step": 400
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.993822994123172e-05,
38
+ "loss": 0.0428,
39
+ "step": 500
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9911007857049264e-05,
44
+ "loss": 0.0265,
45
+ "step": 600
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 4.987884004806111e-05,
50
+ "loss": 0.0263,
51
+ "step": 700
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.984173290072626e-05,
56
+ "loss": 0.03,
57
+ "step": 800
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.979969378213884e-05,
62
+ "loss": 0.0253,
63
+ "step": 900
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 4.975273103856537e-05,
68
+ "loss": 0.038,
69
+ "step": 1000
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.970085399378785e-05,
74
+ "loss": 0.0322,
75
+ "step": 1100
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 4.964407294725254e-05,
80
+ "loss": 0.0296,
81
+ "step": 1200
82
+ },
83
+ {
84
+ "epoch": 0.17,
85
+ "learning_rate": 4.958239917202523e-05,
86
+ "loss": 0.0295,
87
+ "step": 1300
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.9515844912553106e-05,
92
+ "loss": 0.0171,
93
+ "step": 1400
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 4.944442338223378e-05,
98
+ "loss": 0.0205,
99
+ "step": 1500
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 4.9368148760792e-05,
104
+ "loss": 0.029,
105
+ "step": 1600
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.9287036191464414e-05,
110
+ "loss": 0.0172,
111
+ "step": 1700
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 4.9201101777993116e-05,
116
+ "loss": 0.0235,
117
+ "step": 1800
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 4.911036258142853e-05,
122
+ "loss": 0.0168,
123
+ "step": 1900
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 4.9014836616742065e-05,
128
+ "loss": 0.0227,
129
+ "step": 2000
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 4.891454284924965e-05,
134
+ "loss": 0.0227,
135
+ "step": 2100
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 4.8810575041794e-05,
140
+ "loss": 0.0173,
141
+ "step": 2200
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 4.8700853511049656e-05,
146
+ "loss": 0.0227,
147
+ "step": 2300
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 4.858642651436035e-05,
152
+ "loss": 0.0144,
153
+ "step": 2400
154
+ },
155
+ {
156
+ "epoch": 0.34,
157
+ "learning_rate": 4.846731676957191e-05,
158
+ "loss": 0.03,
159
+ "step": 2500
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 4.834354792422293e-05,
164
+ "loss": 0.0189,
165
+ "step": 2600
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 4.821514455084985e-05,
170
+ "loss": 0.0111,
171
+ "step": 2700
172
+ },
173
+ {
174
+ "epoch": 0.38,
175
+ "learning_rate": 4.8082132142108465e-05,
176
+ "loss": 0.0152,
177
+ "step": 2800
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 4.794453710571272e-05,
182
+ "loss": 0.0182,
183
+ "step": 2900
184
+ },
185
+ {
186
+ "epoch": 0.4,
187
+ "learning_rate": 4.780238675919182e-05,
188
+ "loss": 0.0111,
189
+ "step": 3000
190
+ },
191
+ {
192
+ "epoch": 0.42,
193
+ "learning_rate": 4.765570932446672e-05,
194
+ "loss": 0.0138,
195
+ "step": 3100
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 4.75045339222471e-05,
200
+ "loss": 0.0256,
201
+ "step": 3200
202
+ },
203
+ {
204
+ "epoch": 0.44,
205
+ "learning_rate": 4.734889056624983e-05,
206
+ "loss": 0.0199,
207
+ "step": 3300
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 4.718881015724017e-05,
212
+ "loss": 0.0159,
213
+ "step": 3400
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 4.702432447689692e-05,
218
+ "loss": 0.0121,
219
+ "step": 3500
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "learning_rate": 4.6855466181502544e-05,
224
+ "loss": 0.0181,
225
+ "step": 3600
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 4.66822687954598e-05,
230
+ "loss": 0.0148,
231
+ "step": 3700
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 4.65047667046359e-05,
236
+ "loss": 0.0152,
237
+ "step": 3800
238
+ },
239
+ {
240
+ "epoch": 0.52,
241
+ "learning_rate": 4.632299514953571e-05,
242
+ "loss": 0.0103,
243
+ "step": 3900
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 4.613699021830524e-05,
248
+ "loss": 0.0217,
249
+ "step": 4000
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 4.59467888395669e-05,
254
+ "loss": 0.0142,
255
+ "step": 4100
256
+ },
257
+ {
258
+ "epoch": 0.57,
259
+ "learning_rate": 4.575242877508777e-05,
260
+ "loss": 0.0151,
261
+ "step": 4200
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 4.5553948612282607e-05,
266
+ "loss": 0.0164,
267
+ "step": 4300
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 4.5353433433160075e-05,
272
+ "loss": 0.0095,
273
+ "step": 4400
274
+ },
275
+ {
276
+ "epoch": 0.61,
277
+ "learning_rate": 4.514687230313633e-05,
278
+ "loss": 0.015,
279
+ "step": 4500
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 4.49363112993749e-05,
284
+ "loss": 0.015,
285
+ "step": 4600
286
+ },
287
+ {
288
+ "epoch": 0.63,
289
+ "learning_rate": 4.472179222575561e-05,
290
+ "loss": 0.0181,
291
+ "step": 4700
292
+ },
293
+ {
294
+ "epoch": 0.65,
295
+ "learning_rate": 4.4503357671976574e-05,
296
+ "loss": 0.0175,
297
+ "step": 4800
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 4.428105100509852e-05,
302
+ "loss": 0.0069,
303
+ "step": 4900
304
+ },
305
+ {
306
+ "epoch": 0.67,
307
+ "learning_rate": 4.4054916360934957e-05,
308
+ "loss": 0.0108,
309
+ "step": 5000
310
+ },
311
+ {
312
+ "epoch": 0.69,
313
+ "learning_rate": 4.3824998635289594e-05,
314
+ "loss": 0.0204,
315
+ "step": 5100
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 4.3591343475042946e-05,
320
+ "loss": 0.0192,
321
+ "step": 5200
322
+ },
323
+ {
324
+ "epoch": 0.71,
325
+ "learning_rate": 4.3353997269089774e-05,
326
+ "loss": 0.0086,
327
+ "step": 5300
328
+ },
329
+ {
330
+ "epoch": 0.73,
331
+ "learning_rate": 4.311300713912926e-05,
332
+ "loss": 0.0179,
333
+ "step": 5400
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 4.286842093030963e-05,
338
+ "loss": 0.0142,
339
+ "step": 5500
340
+ },
341
+ {
342
+ "epoch": 0.75,
343
+ "learning_rate": 4.262028720172921e-05,
344
+ "loss": 0.0187,
345
+ "step": 5600
346
+ },
347
+ {
348
+ "epoch": 0.77,
349
+ "learning_rate": 4.2368655216795735e-05,
350
+ "loss": 0.0176,
351
+ "step": 5700
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 4.211357493344573e-05,
356
+ "loss": 0.0145,
357
+ "step": 5800
358
+ },
359
+ {
360
+ "epoch": 0.79,
361
+ "learning_rate": 4.185509699422615e-05,
362
+ "loss": 0.0087,
363
+ "step": 5900
364
+ },
365
+ {
366
+ "epoch": 0.81,
367
+ "learning_rate": 4.1593272716239985e-05,
368
+ "loss": 0.0136,
369
+ "step": 6000
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 4.132815408095797e-05,
374
+ "loss": 0.0137,
375
+ "step": 6100
376
+ },
377
+ {
378
+ "epoch": 0.83,
379
+ "learning_rate": 4.105979372389847e-05,
380
+ "loss": 0.011,
381
+ "step": 6200
382
+ },
383
+ {
384
+ "epoch": 0.85,
385
+ "learning_rate": 4.0788244924177365e-05,
386
+ "loss": 0.024,
387
+ "step": 6300
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 4.0513561593930325e-05,
392
+ "loss": 0.0067,
393
+ "step": 6400
394
+ },
395
+ {
396
+ "epoch": 0.87,
397
+ "learning_rate": 4.023579826760924e-05,
398
+ "loss": 0.0102,
399
+ "step": 6500
400
+ },
401
+ {
402
+ "epoch": 0.89,
403
+ "learning_rate": 3.995501009115527e-05,
404
+ "loss": 0.013,
405
+ "step": 6600
406
+ },
407
+ {
408
+ "epoch": 0.9,
409
+ "learning_rate": 3.9674104896418544e-05,
410
+ "loss": 0.0133,
411
+ "step": 6700
412
+ },
413
+ {
414
+ "epoch": 0.91,
415
+ "learning_rate": 3.9387463695523555e-05,
416
+ "loss": 0.0087,
417
+ "step": 6800
418
+ },
419
+ {
420
+ "epoch": 0.93,
421
+ "learning_rate": 3.9097966069208193e-05,
422
+ "loss": 0.01,
423
+ "step": 6900
424
+ },
425
+ {
426
+ "epoch": 0.94,
427
+ "learning_rate": 3.880566949309125e-05,
428
+ "loss": 0.0113,
429
+ "step": 7000
430
+ },
431
+ {
432
+ "epoch": 0.96,
433
+ "learning_rate": 3.8513595749088484e-05,
434
+ "loss": 0.0101,
435
+ "step": 7100
436
+ },
437
+ {
438
+ "epoch": 0.97,
439
+ "learning_rate": 3.821590244319273e-05,
440
+ "loss": 0.0092,
441
+ "step": 7200
442
+ },
443
+ {
444
+ "epoch": 0.98,
445
+ "learning_rate": 3.791558530862982e-05,
446
+ "loss": 0.0176,
447
+ "step": 7300
448
+ },
449
+ {
450
+ "epoch": 1.0,
451
+ "learning_rate": 3.76127039690774e-05,
452
+ "loss": 0.0114,
453
+ "step": 7400
454
+ },
455
+ {
456
+ "epoch": 1.01,
457
+ "learning_rate": 3.7307318557299355e-05,
458
+ "loss": 0.0083,
459
+ "step": 7500
460
+ },
461
+ {
462
+ "epoch": 1.02,
463
+ "learning_rate": 3.699948970320738e-05,
464
+ "loss": 0.0067,
465
+ "step": 7600
466
+ },
467
+ {
468
+ "epoch": 1.04,
469
+ "learning_rate": 3.668927852182374e-05,
470
+ "loss": 0.0021,
471
+ "step": 7700
472
+ },
473
+ {
474
+ "epoch": 1.05,
475
+ "learning_rate": 3.637674660114774e-05,
476
+ "loss": 0.0087,
477
+ "step": 7800
478
+ },
479
+ {
480
+ "epoch": 1.06,
481
+ "learning_rate": 3.606195598992832e-05,
482
+ "loss": 0.005,
483
+ "step": 7900
484
+ },
485
+ {
486
+ "epoch": 1.08,
487
+ "learning_rate": 3.574496918534519e-05,
488
+ "loss": 0.014,
489
+ "step": 8000
490
+ },
491
+ {
492
+ "epoch": 1.09,
493
+ "learning_rate": 3.542584912060087e-05,
494
+ "loss": 0.0073,
495
+ "step": 8100
496
+ },
497
+ {
498
+ "epoch": 1.1,
499
+ "learning_rate": 3.510465915242623e-05,
500
+ "loss": 0.0073,
501
+ "step": 8200
502
+ },
503
+ {
504
+ "epoch": 1.12,
505
+ "learning_rate": 3.478146304850188e-05,
506
+ "loss": 0.0106,
507
+ "step": 8300
508
+ },
509
+ {
510
+ "epoch": 1.13,
511
+ "learning_rate": 3.4456324974798025e-05,
512
+ "loss": 0.0106,
513
+ "step": 8400
514
+ },
515
+ {
516
+ "epoch": 1.14,
517
+ "learning_rate": 3.412930948283528e-05,
518
+ "loss": 0.0036,
519
+ "step": 8500
520
+ },
521
+ {
522
+ "epoch": 1.16,
523
+ "learning_rate": 3.380048149686877e-05,
524
+ "loss": 0.0051,
525
+ "step": 8600
526
+ },
527
+ {
528
+ "epoch": 1.17,
529
+ "learning_rate": 3.3469906300998476e-05,
530
+ "loss": 0.0047,
531
+ "step": 8700
532
+ },
533
+ {
534
+ "epoch": 1.18,
535
+ "learning_rate": 3.313764952620792e-05,
536
+ "loss": 0.0035,
537
+ "step": 8800
538
+ },
539
+ {
540
+ "epoch": 1.2,
541
+ "learning_rate": 3.280377713733412e-05,
542
+ "loss": 0.0094,
543
+ "step": 8900
544
+ },
545
+ {
546
+ "epoch": 1.21,
547
+ "learning_rate": 3.246835541997116e-05,
548
+ "loss": 0.0077,
549
+ "step": 9000
550
+ },
551
+ {
552
+ "epoch": 1.22,
553
+ "learning_rate": 3.213145096731021e-05,
554
+ "loss": 0.0076,
555
+ "step": 9100
556
+ },
557
+ {
558
+ "epoch": 1.24,
559
+ "learning_rate": 3.1793130666918324e-05,
560
+ "loss": 0.0074,
561
+ "step": 9200
562
+ },
563
+ {
564
+ "epoch": 1.25,
565
+ "learning_rate": 3.145346168745891e-05,
566
+ "loss": 0.0072,
567
+ "step": 9300
568
+ },
569
+ {
570
+ "epoch": 1.26,
571
+ "learning_rate": 3.111251146535634e-05,
572
+ "loss": 0.0043,
573
+ "step": 9400
574
+ },
575
+ {
576
+ "epoch": 1.28,
577
+ "learning_rate": 3.077377511336779e-05,
578
+ "loss": 0.0071,
579
+ "step": 9500
580
+ },
581
+ {
582
+ "epoch": 1.29,
583
+ "learning_rate": 3.043047683848379e-05,
584
+ "loss": 0.0102,
585
+ "step": 9600
586
+ },
587
+ {
588
+ "epoch": 1.31,
589
+ "learning_rate": 3.0086100419987084e-05,
590
+ "loss": 0.005,
591
+ "step": 9700
592
+ },
593
+ {
594
+ "epoch": 1.32,
595
+ "learning_rate": 2.974071422889685e-05,
596
+ "loss": 0.0155,
597
+ "step": 9800
598
+ },
599
+ {
600
+ "epoch": 1.33,
601
+ "learning_rate": 2.9394386836708154e-05,
602
+ "loss": 0.0086,
603
+ "step": 9900
604
+ },
605
+ {
606
+ "epoch": 1.35,
607
+ "learning_rate": 2.9047187001778132e-05,
608
+ "loss": 0.0048,
609
+ "step": 10000
610
+ },
611
+ {
612
+ "epoch": 1.36,
613
+ "learning_rate": 2.8699183655674938e-05,
614
+ "loss": 0.0085,
615
+ "step": 10100
616
+ },
617
+ {
618
+ "epoch": 1.37,
619
+ "learning_rate": 2.835044588949241e-05,
620
+ "loss": 0.0091,
621
+ "step": 10200
622
+ },
623
+ {
624
+ "epoch": 1.39,
625
+ "learning_rate": 2.8001042940132995e-05,
626
+ "loss": 0.0089,
627
+ "step": 10300
628
+ },
629
+ {
630
+ "epoch": 1.4,
631
+ "learning_rate": 2.7651044176561748e-05,
632
+ "loss": 0.0093,
633
+ "step": 10400
634
+ },
635
+ {
636
+ "epoch": 1.41,
637
+ "learning_rate": 2.7300519086034166e-05,
638
+ "loss": 0.0073,
639
+ "step": 10500
640
+ },
641
+ {
642
+ "epoch": 1.43,
643
+ "learning_rate": 2.6949537260300395e-05,
644
+ "loss": 0.0029,
645
+ "step": 10600
646
+ },
647
+ {
648
+ "epoch": 1.44,
649
+ "learning_rate": 2.6598168381788864e-05,
650
+ "loss": 0.0027,
651
+ "step": 10700
652
+ },
653
+ {
654
+ "epoch": 1.45,
655
+ "learning_rate": 2.6246482209771783e-05,
656
+ "loss": 0.011,
657
+ "step": 10800
658
+ },
659
+ {
660
+ "epoch": 1.47,
661
+ "learning_rate": 2.5894548566515485e-05,
662
+ "loss": 0.0108,
663
+ "step": 10900
664
+ },
665
+ {
666
+ "epoch": 1.48,
667
+ "learning_rate": 2.554243732341816e-05,
668
+ "loss": 0.0033,
669
+ "step": 11000
670
+ },
671
+ {
672
+ "epoch": 1.49,
673
+ "learning_rate": 2.519021838713791e-05,
674
+ "loss": 0.0048,
675
+ "step": 11100
676
+ },
677
+ {
678
+ "epoch": 1.51,
679
+ "learning_rate": 2.483796168571378e-05,
680
+ "loss": 0.0015,
681
+ "step": 11200
682
+ },
683
+ {
684
+ "epoch": 1.52,
685
+ "learning_rate": 2.4485737154682554e-05,
686
+ "loss": 0.0053,
687
+ "step": 11300
688
+ },
689
+ {
690
+ "epoch": 1.53,
691
+ "learning_rate": 2.4133614723194047e-05,
692
+ "loss": 0.0043,
693
+ "step": 11400
694
+ },
695
+ {
696
+ "epoch": 1.55,
697
+ "learning_rate": 2.378166430012766e-05,
698
+ "loss": 0.0086,
699
+ "step": 11500
700
+ },
701
+ {
702
+ "epoch": 1.56,
703
+ "learning_rate": 2.3429955760212966e-05,
704
+ "loss": 0.0077,
705
+ "step": 11600
706
+ },
707
+ {
708
+ "epoch": 1.57,
709
+ "learning_rate": 2.307855893015712e-05,
710
+ "loss": 0.0066,
711
+ "step": 11700
712
+ },
713
+ {
714
+ "epoch": 1.59,
715
+ "learning_rate": 2.272754357478172e-05,
716
+ "loss": 0.0055,
717
+ "step": 11800
718
+ },
719
+ {
720
+ "epoch": 1.6,
721
+ "learning_rate": 2.237697938317202e-05,
722
+ "loss": 0.0067,
723
+ "step": 11900
724
+ },
725
+ {
726
+ "epoch": 1.61,
727
+ "learning_rate": 2.202693595484113e-05,
728
+ "loss": 0.0082,
729
+ "step": 12000
730
+ },
731
+ {
732
+ "epoch": 1.63,
733
+ "learning_rate": 2.1680974167907623e-05,
734
+ "loss": 0.0101,
735
+ "step": 12100
736
+ },
737
+ {
738
+ "epoch": 1.64,
739
+ "learning_rate": 2.1332173697925385e-05,
740
+ "loss": 0.0019,
741
+ "step": 12200
742
+ },
743
+ {
744
+ "epoch": 1.65,
745
+ "learning_rate": 2.09841014224678e-05,
746
+ "loss": 0.0106,
747
+ "step": 12300
748
+ },
749
+ {
750
+ "epoch": 1.67,
751
+ "learning_rate": 2.063682644631365e-05,
752
+ "loss": 0.0051,
753
+ "step": 12400
754
+ },
755
+ {
756
+ "epoch": 1.68,
757
+ "learning_rate": 2.0290417715949304e-05,
758
+ "loss": 0.0076,
759
+ "step": 12500
760
+ },
761
+ {
762
+ "epoch": 1.7,
763
+ "learning_rate": 1.994494400588042e-05,
764
+ "loss": 0.0037,
765
+ "step": 12600
766
+ },
767
+ {
768
+ "epoch": 1.71,
769
+ "learning_rate": 1.9600473904977725e-05,
770
+ "loss": 0.0073,
771
+ "step": 12700
772
+ },
773
+ {
774
+ "epoch": 1.72,
775
+ "learning_rate": 1.9257075802859685e-05,
776
+ "loss": 0.0052,
777
+ "step": 12800
778
+ },
779
+ {
780
+ "epoch": 1.74,
781
+ "learning_rate": 1.89148178763147e-05,
782
+ "loss": 0.0038,
783
+ "step": 12900
784
+ },
785
+ {
786
+ "epoch": 1.75,
787
+ "learning_rate": 1.857376807576563e-05,
788
+ "loss": 0.0044,
789
+ "step": 13000
790
+ },
791
+ {
792
+ "epoch": 1.76,
793
+ "learning_rate": 1.8233994111779146e-05,
794
+ "loss": 0.0031,
795
+ "step": 13100
796
+ },
797
+ {
798
+ "epoch": 1.78,
799
+ "learning_rate": 1.7895563441622803e-05,
800
+ "loss": 0.0067,
801
+ "step": 13200
802
+ },
803
+ {
804
+ "epoch": 1.79,
805
+ "learning_rate": 1.7558543255872352e-05,
806
+ "loss": 0.0096,
807
+ "step": 13300
808
+ },
809
+ {
810
+ "epoch": 1.8,
811
+ "learning_rate": 1.7223000465072e-05,
812
+ "loss": 0.0063,
813
+ "step": 13400
814
+ },
815
+ {
816
+ "epoch": 1.82,
817
+ "learning_rate": 1.68890016864503e-05,
818
+ "loss": 0.0064,
819
+ "step": 13500
820
+ },
821
+ {
822
+ "epoch": 1.83,
823
+ "learning_rate": 1.6556613230694243e-05,
824
+ "loss": 0.0047,
825
+ "step": 13600
826
+ },
827
+ {
828
+ "epoch": 1.84,
829
+ "learning_rate": 1.6225901088784207e-05,
830
+ "loss": 0.0023,
831
+ "step": 13700
832
+ },
833
+ {
834
+ "epoch": 1.86,
835
+ "learning_rate": 1.58969309188924e-05,
836
+ "loss": 0.0064,
837
+ "step": 13800
838
+ },
839
+ {
840
+ "epoch": 1.87,
841
+ "learning_rate": 1.556976803334737e-05,
842
+ "loss": 0.004,
843
+ "step": 13900
844
+ },
845
+ {
846
+ "epoch": 1.88,
847
+ "learning_rate": 1.5244477385667167e-05,
848
+ "loss": 0.0016,
849
+ "step": 14000
850
+ },
851
+ {
852
+ "epoch": 1.9,
853
+ "learning_rate": 1.4921123557663763e-05,
854
+ "loss": 0.008,
855
+ "step": 14100
856
+ },
857
+ {
858
+ "epoch": 1.91,
859
+ "learning_rate": 1.4599770746621238e-05,
860
+ "loss": 0.0047,
861
+ "step": 14200
862
+ },
863
+ {
864
+ "epoch": 1.92,
865
+ "learning_rate": 1.4280482752550327e-05,
866
+ "loss": 0.0056,
867
+ "step": 14300
868
+ },
869
+ {
870
+ "epoch": 1.94,
871
+ "learning_rate": 1.396332296552188e-05,
872
+ "loss": 0.0065,
873
+ "step": 14400
874
+ },
875
+ {
876
+ "epoch": 1.95,
877
+ "learning_rate": 1.3648354353081588e-05,
878
+ "loss": 0.004,
879
+ "step": 14500
880
+ },
881
+ {
882
+ "epoch": 1.96,
883
+ "learning_rate": 1.333563944774876e-05,
884
+ "loss": 0.0065,
885
+ "step": 14600
886
+ },
887
+ {
888
+ "epoch": 1.98,
889
+ "learning_rate": 1.3028332659827522e-05,
890
+ "loss": 0.0026,
891
+ "step": 14700
892
+ },
893
+ {
894
+ "epoch": 1.99,
895
+ "learning_rate": 1.2720286886495473e-05,
896
+ "loss": 0.008,
897
+ "step": 14800
898
+ },
899
+ {
900
+ "epoch": 2.0,
901
+ "learning_rate": 1.2414679074810755e-05,
902
+ "loss": 0.0053,
903
+ "step": 14900
904
+ },
905
+ {
906
+ "epoch": 2.02,
907
+ "learning_rate": 1.211156989883942e-05,
908
+ "loss": 0.0024,
909
+ "step": 15000
910
+ },
911
+ {
912
+ "epoch": 2.03,
913
+ "learning_rate": 1.1811019536579015e-05,
914
+ "loss": 0.0014,
915
+ "step": 15100
916
+ },
917
+ {
918
+ "epoch": 2.05,
919
+ "learning_rate": 1.1513087658011207e-05,
920
+ "loss": 0.0005,
921
+ "step": 15200
922
+ },
923
+ {
924
+ "epoch": 2.06,
925
+ "learning_rate": 1.1217833413255133e-05,
926
+ "loss": 0.0002,
927
+ "step": 15300
928
+ },
929
+ {
930
+ "epoch": 2.07,
931
+ "learning_rate": 1.0925315420823949e-05,
932
+ "loss": 0.0023,
933
+ "step": 15400
934
+ },
935
+ {
936
+ "epoch": 2.09,
937
+ "learning_rate": 1.063559175598702e-05,
938
+ "loss": 0.0003,
939
+ "step": 15500
940
+ },
941
+ {
942
+ "epoch": 2.1,
943
+ "learning_rate": 1.0348719939239885e-05,
944
+ "loss": 0.0009,
945
+ "step": 15600
946
+ },
947
+ {
948
+ "epoch": 2.11,
949
+ "learning_rate": 1.0064756924884342e-05,
950
+ "loss": 0.0059,
951
+ "step": 15700
952
+ },
953
+ {
954
+ "epoch": 2.13,
955
+ "learning_rate": 9.783759089721054e-06,
956
+ "loss": 0.0005,
957
+ "step": 15800
958
+ },
959
+ {
960
+ "epoch": 2.14,
961
+ "learning_rate": 9.505782221856696e-06,
962
+ "loss": 0.0009,
963
+ "step": 15900
964
+ },
965
+ {
966
+ "epoch": 2.15,
967
+ "learning_rate": 9.230881509628037e-06,
968
+ "loss": 0.0013,
969
+ "step": 16000
970
+ },
971
+ {
972
+ "epoch": 2.17,
973
+ "learning_rate": 8.959111530645085e-06,
974
+ "loss": 0.0017,
975
+ "step": 16100
976
+ },
977
+ {
978
+ "epoch": 2.18,
979
+ "learning_rate": 8.690526240955454e-06,
980
+ "loss": 0.0025,
981
+ "step": 16200
982
+ },
983
+ {
984
+ "epoch": 2.19,
985
+ "learning_rate": 8.425178964332225e-06,
986
+ "loss": 0.005,
987
+ "step": 16300
988
+ },
989
+ {
990
+ "epoch": 2.21,
991
+ "learning_rate": 8.163122381687191e-06,
992
+ "loss": 0.0039,
993
+ "step": 16400
994
+ },
995
+ {
996
+ "epoch": 2.22,
997
+ "learning_rate": 7.90440852061189e-06,
998
+ "loss": 0.0002,
999
+ "step": 16500
1000
+ },
1001
+ {
1002
+ "epoch": 2.23,
1003
+ "learning_rate": 7.64908874504823e-06,
1004
+ "loss": 0.0014,
1005
+ "step": 16600
1006
+ },
1007
+ {
1008
+ "epoch": 2.25,
1009
+ "learning_rate": 7.3972137450908895e-06,
1010
+ "loss": 0.0008,
1011
+ "step": 16700
1012
+ },
1013
+ {
1014
+ "epoch": 2.26,
1015
+ "learning_rate": 7.148833526923606e-06,
1016
+ "loss": 0.0031,
1017
+ "step": 16800
1018
+ },
1019
+ {
1020
+ "epoch": 2.27,
1021
+ "learning_rate": 6.9039974028910575e-06,
1022
+ "loss": 0.0022,
1023
+ "step": 16900
1024
+ },
1025
+ {
1026
+ "epoch": 2.29,
1027
+ "learning_rate": 6.6627539817086775e-06,
1028
+ "loss": 0.0006,
1029
+ "step": 17000
1030
+ },
1031
+ {
1032
+ "epoch": 2.3,
1033
+ "learning_rate": 6.425151158812067e-06,
1034
+ "loss": 0.0001,
1035
+ "step": 17100
1036
+ },
1037
+ {
1038
+ "epoch": 2.31,
1039
+ "learning_rate": 6.191236106848014e-06,
1040
+ "loss": 0.0001,
1041
+ "step": 17200
1042
+ },
1043
+ {
1044
+ "epoch": 2.33,
1045
+ "learning_rate": 5.961055266309076e-06,
1046
+ "loss": 0.0055,
1047
+ "step": 17300
1048
+ },
1049
+ {
1050
+ "epoch": 2.34,
1051
+ "learning_rate": 5.73465433631348e-06,
1052
+ "loss": 0.0006,
1053
+ "step": 17400
1054
+ },
1055
+ {
1056
+ "epoch": 2.35,
1057
+ "learning_rate": 5.512078265532167e-06,
1058
+ "loss": 0.0001,
1059
+ "step": 17500
1060
+ },
1061
+ {
1062
+ "epoch": 2.37,
1063
+ "learning_rate": 5.293371243264947e-06,
1064
+ "loss": 0.0,
1065
+ "step": 17600
1066
+ },
1067
+ {
1068
+ "epoch": 2.38,
1069
+ "learning_rate": 5.078576690667289e-06,
1070
+ "loss": 0.001,
1071
+ "step": 17700
1072
+ },
1073
+ {
1074
+ "epoch": 2.39,
1075
+ "learning_rate": 4.8677372521297e-06,
1076
+ "loss": 0.0003,
1077
+ "step": 17800
1078
+ },
1079
+ {
1080
+ "epoch": 2.41,
1081
+ "learning_rate": 4.660894786811287e-06,
1082
+ "loss": 0.0027,
1083
+ "step": 17900
1084
+ },
1085
+ {
1086
+ "epoch": 2.42,
1087
+ "learning_rate": 4.4580903603291895e-06,
1088
+ "loss": 0.0027,
1089
+ "step": 18000
1090
+ }
1091
+ ],
1092
+ "logging_steps": 100,
1093
+ "max_steps": 22296,
1094
+ "num_input_tokens_seen": 0,
1095
+ "num_train_epochs": 3,
1096
+ "save_steps": 3000,
1097
+ "total_flos": 5.035419489463566e+18,
1098
+ "train_batch_size": 4,
1099
+ "trial_name": null,
1100
+ "trial_params": null
1101
+ }
LLM-Detector-V7-11w/checkpoint-18000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda912c16bf2c6e8ac3158b354c96cabf8fd0eff786de104f90c23c31741ef25
3
+ size 4856
LLM-Detector-V7-11w/checkpoint-21000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./Mistral-7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
LLM-Detector-V7-11w/checkpoint-21000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }
LLM-Detector-V7-11w/checkpoint-21000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e8126d333246fb6c27064bda467eec5f40dfe2fc4e43f939918b35a5c756db0
3
+ size 13648432
LLM-Detector-V7-11w/checkpoint-21000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5ff00fee246bf537fe0d2fc688d970100898b31ec69cf0d387101f348785a8d
3
+ size 27370618
LLM-Detector-V7-11w/checkpoint-21000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c062f7f375beded48b5337f5a3f3a5cb38807fa3e85dbf3e294c0ab6b627bfc2
3
+ size 14244
LLM-Detector-V7-11w/checkpoint-21000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:713761332054d3e14a2c95eaeef7e343c5253856445ea0f0649f8adc824d6c21
3
+ size 1064
LLM-Detector-V7-11w/checkpoint-21000/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
LLM-Detector-V7-11w/checkpoint-21000/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
LLM-Detector-V7-11w/checkpoint-21000/tokenizer_config.json ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "additional_special_tokens": [],
31
+ "bos_token": "<s>",
32
+ "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '[INST] ' + message['content'] + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ message['content'] + eos_token + ' ' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}",
33
+ "clean_up_tokenization_spaces": false,
34
+ "eos_token": "</s>",
35
+ "legacy": true,
36
+ "model_max_length": 1000000000000000019884624838656,
37
+ "pad_token": "</s>",
38
+ "padding_side": "right",
39
+ "sp_model_kwargs": {},
40
+ "spaces_between_special_tokens": false,
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "LlamaTokenizer",
43
+ "unk_token": "<unk>",
44
+ "use_default_system_prompt": false
45
+ }
LLM-Detector-V7-11w/checkpoint-21000/trainer_state.json ADDED
@@ -0,0 +1,1281 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.825333826645589,
5
+ "eval_steps": 500,
6
+ "global_step": 21000,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01,
13
+ "learning_rate": 4.9997567688496474e-05,
14
+ "loss": 1.6283,
15
+ "step": 100
16
+ },
17
+ {
18
+ "epoch": 0.03,
19
+ "learning_rate": 4.9990172715142793e-05,
20
+ "loss": 0.068,
21
+ "step": 200
22
+ },
23
+ {
24
+ "epoch": 0.04,
25
+ "learning_rate": 4.997781629993153e-05,
26
+ "loss": 0.0404,
27
+ "step": 300
28
+ },
29
+ {
30
+ "epoch": 0.05,
31
+ "learning_rate": 4.9960500896052476e-05,
32
+ "loss": 0.0626,
33
+ "step": 400
34
+ },
35
+ {
36
+ "epoch": 0.07,
37
+ "learning_rate": 4.993822994123172e-05,
38
+ "loss": 0.0428,
39
+ "step": 500
40
+ },
41
+ {
42
+ "epoch": 0.08,
43
+ "learning_rate": 4.9911007857049264e-05,
44
+ "loss": 0.0265,
45
+ "step": 600
46
+ },
47
+ {
48
+ "epoch": 0.09,
49
+ "learning_rate": 4.987884004806111e-05,
50
+ "loss": 0.0263,
51
+ "step": 700
52
+ },
53
+ {
54
+ "epoch": 0.11,
55
+ "learning_rate": 4.984173290072626e-05,
56
+ "loss": 0.03,
57
+ "step": 800
58
+ },
59
+ {
60
+ "epoch": 0.12,
61
+ "learning_rate": 4.979969378213884e-05,
62
+ "loss": 0.0253,
63
+ "step": 900
64
+ },
65
+ {
66
+ "epoch": 0.13,
67
+ "learning_rate": 4.975273103856537e-05,
68
+ "loss": 0.038,
69
+ "step": 1000
70
+ },
71
+ {
72
+ "epoch": 0.15,
73
+ "learning_rate": 4.970085399378785e-05,
74
+ "loss": 0.0322,
75
+ "step": 1100
76
+ },
77
+ {
78
+ "epoch": 0.16,
79
+ "learning_rate": 4.964407294725254e-05,
80
+ "loss": 0.0296,
81
+ "step": 1200
82
+ },
83
+ {
84
+ "epoch": 0.17,
85
+ "learning_rate": 4.958239917202523e-05,
86
+ "loss": 0.0295,
87
+ "step": 1300
88
+ },
89
+ {
90
+ "epoch": 0.19,
91
+ "learning_rate": 4.9515844912553106e-05,
92
+ "loss": 0.0171,
93
+ "step": 1400
94
+ },
95
+ {
96
+ "epoch": 0.2,
97
+ "learning_rate": 4.944442338223378e-05,
98
+ "loss": 0.0205,
99
+ "step": 1500
100
+ },
101
+ {
102
+ "epoch": 0.22,
103
+ "learning_rate": 4.9368148760792e-05,
104
+ "loss": 0.029,
105
+ "step": 1600
106
+ },
107
+ {
108
+ "epoch": 0.23,
109
+ "learning_rate": 4.9287036191464414e-05,
110
+ "loss": 0.0172,
111
+ "step": 1700
112
+ },
113
+ {
114
+ "epoch": 0.24,
115
+ "learning_rate": 4.9201101777993116e-05,
116
+ "loss": 0.0235,
117
+ "step": 1800
118
+ },
119
+ {
120
+ "epoch": 0.26,
121
+ "learning_rate": 4.911036258142853e-05,
122
+ "loss": 0.0168,
123
+ "step": 1900
124
+ },
125
+ {
126
+ "epoch": 0.27,
127
+ "learning_rate": 4.9014836616742065e-05,
128
+ "loss": 0.0227,
129
+ "step": 2000
130
+ },
131
+ {
132
+ "epoch": 0.28,
133
+ "learning_rate": 4.891454284924965e-05,
134
+ "loss": 0.0227,
135
+ "step": 2100
136
+ },
137
+ {
138
+ "epoch": 0.3,
139
+ "learning_rate": 4.8810575041794e-05,
140
+ "loss": 0.0173,
141
+ "step": 2200
142
+ },
143
+ {
144
+ "epoch": 0.31,
145
+ "learning_rate": 4.8700853511049656e-05,
146
+ "loss": 0.0227,
147
+ "step": 2300
148
+ },
149
+ {
150
+ "epoch": 0.32,
151
+ "learning_rate": 4.858642651436035e-05,
152
+ "loss": 0.0144,
153
+ "step": 2400
154
+ },
155
+ {
156
+ "epoch": 0.34,
157
+ "learning_rate": 4.846731676957191e-05,
158
+ "loss": 0.03,
159
+ "step": 2500
160
+ },
161
+ {
162
+ "epoch": 0.35,
163
+ "learning_rate": 4.834354792422293e-05,
164
+ "loss": 0.0189,
165
+ "step": 2600
166
+ },
167
+ {
168
+ "epoch": 0.36,
169
+ "learning_rate": 4.821514455084985e-05,
170
+ "loss": 0.0111,
171
+ "step": 2700
172
+ },
173
+ {
174
+ "epoch": 0.38,
175
+ "learning_rate": 4.8082132142108465e-05,
176
+ "loss": 0.0152,
177
+ "step": 2800
178
+ },
179
+ {
180
+ "epoch": 0.39,
181
+ "learning_rate": 4.794453710571272e-05,
182
+ "loss": 0.0182,
183
+ "step": 2900
184
+ },
185
+ {
186
+ "epoch": 0.4,
187
+ "learning_rate": 4.780238675919182e-05,
188
+ "loss": 0.0111,
189
+ "step": 3000
190
+ },
191
+ {
192
+ "epoch": 0.42,
193
+ "learning_rate": 4.765570932446672e-05,
194
+ "loss": 0.0138,
195
+ "step": 3100
196
+ },
197
+ {
198
+ "epoch": 0.43,
199
+ "learning_rate": 4.75045339222471e-05,
200
+ "loss": 0.0256,
201
+ "step": 3200
202
+ },
203
+ {
204
+ "epoch": 0.44,
205
+ "learning_rate": 4.734889056624983e-05,
206
+ "loss": 0.0199,
207
+ "step": 3300
208
+ },
209
+ {
210
+ "epoch": 0.46,
211
+ "learning_rate": 4.718881015724017e-05,
212
+ "loss": 0.0159,
213
+ "step": 3400
214
+ },
215
+ {
216
+ "epoch": 0.47,
217
+ "learning_rate": 4.702432447689692e-05,
218
+ "loss": 0.0121,
219
+ "step": 3500
220
+ },
221
+ {
222
+ "epoch": 0.48,
223
+ "learning_rate": 4.6855466181502544e-05,
224
+ "loss": 0.0181,
225
+ "step": 3600
226
+ },
227
+ {
228
+ "epoch": 0.5,
229
+ "learning_rate": 4.66822687954598e-05,
230
+ "loss": 0.0148,
231
+ "step": 3700
232
+ },
233
+ {
234
+ "epoch": 0.51,
235
+ "learning_rate": 4.65047667046359e-05,
236
+ "loss": 0.0152,
237
+ "step": 3800
238
+ },
239
+ {
240
+ "epoch": 0.52,
241
+ "learning_rate": 4.632299514953571e-05,
242
+ "loss": 0.0103,
243
+ "step": 3900
244
+ },
245
+ {
246
+ "epoch": 0.54,
247
+ "learning_rate": 4.613699021830524e-05,
248
+ "loss": 0.0217,
249
+ "step": 4000
250
+ },
251
+ {
252
+ "epoch": 0.55,
253
+ "learning_rate": 4.59467888395669e-05,
254
+ "loss": 0.0142,
255
+ "step": 4100
256
+ },
257
+ {
258
+ "epoch": 0.57,
259
+ "learning_rate": 4.575242877508777e-05,
260
+ "loss": 0.0151,
261
+ "step": 4200
262
+ },
263
+ {
264
+ "epoch": 0.58,
265
+ "learning_rate": 4.5553948612282607e-05,
266
+ "loss": 0.0164,
267
+ "step": 4300
268
+ },
269
+ {
270
+ "epoch": 0.59,
271
+ "learning_rate": 4.5353433433160075e-05,
272
+ "loss": 0.0095,
273
+ "step": 4400
274
+ },
275
+ {
276
+ "epoch": 0.61,
277
+ "learning_rate": 4.514687230313633e-05,
278
+ "loss": 0.015,
279
+ "step": 4500
280
+ },
281
+ {
282
+ "epoch": 0.62,
283
+ "learning_rate": 4.49363112993749e-05,
284
+ "loss": 0.015,
285
+ "step": 4600
286
+ },
287
+ {
288
+ "epoch": 0.63,
289
+ "learning_rate": 4.472179222575561e-05,
290
+ "loss": 0.0181,
291
+ "step": 4700
292
+ },
293
+ {
294
+ "epoch": 0.65,
295
+ "learning_rate": 4.4503357671976574e-05,
296
+ "loss": 0.0175,
297
+ "step": 4800
298
+ },
299
+ {
300
+ "epoch": 0.66,
301
+ "learning_rate": 4.428105100509852e-05,
302
+ "loss": 0.0069,
303
+ "step": 4900
304
+ },
305
+ {
306
+ "epoch": 0.67,
307
+ "learning_rate": 4.4054916360934957e-05,
308
+ "loss": 0.0108,
309
+ "step": 5000
310
+ },
311
+ {
312
+ "epoch": 0.69,
313
+ "learning_rate": 4.3824998635289594e-05,
314
+ "loss": 0.0204,
315
+ "step": 5100
316
+ },
317
+ {
318
+ "epoch": 0.7,
319
+ "learning_rate": 4.3591343475042946e-05,
320
+ "loss": 0.0192,
321
+ "step": 5200
322
+ },
323
+ {
324
+ "epoch": 0.71,
325
+ "learning_rate": 4.3353997269089774e-05,
326
+ "loss": 0.0086,
327
+ "step": 5300
328
+ },
329
+ {
330
+ "epoch": 0.73,
331
+ "learning_rate": 4.311300713912926e-05,
332
+ "loss": 0.0179,
333
+ "step": 5400
334
+ },
335
+ {
336
+ "epoch": 0.74,
337
+ "learning_rate": 4.286842093030963e-05,
338
+ "loss": 0.0142,
339
+ "step": 5500
340
+ },
341
+ {
342
+ "epoch": 0.75,
343
+ "learning_rate": 4.262028720172921e-05,
344
+ "loss": 0.0187,
345
+ "step": 5600
346
+ },
347
+ {
348
+ "epoch": 0.77,
349
+ "learning_rate": 4.2368655216795735e-05,
350
+ "loss": 0.0176,
351
+ "step": 5700
352
+ },
353
+ {
354
+ "epoch": 0.78,
355
+ "learning_rate": 4.211357493344573e-05,
356
+ "loss": 0.0145,
357
+ "step": 5800
358
+ },
359
+ {
360
+ "epoch": 0.79,
361
+ "learning_rate": 4.185509699422615e-05,
362
+ "loss": 0.0087,
363
+ "step": 5900
364
+ },
365
+ {
366
+ "epoch": 0.81,
367
+ "learning_rate": 4.1593272716239985e-05,
368
+ "loss": 0.0136,
369
+ "step": 6000
370
+ },
371
+ {
372
+ "epoch": 0.82,
373
+ "learning_rate": 4.132815408095797e-05,
374
+ "loss": 0.0137,
375
+ "step": 6100
376
+ },
377
+ {
378
+ "epoch": 0.83,
379
+ "learning_rate": 4.105979372389847e-05,
380
+ "loss": 0.011,
381
+ "step": 6200
382
+ },
383
+ {
384
+ "epoch": 0.85,
385
+ "learning_rate": 4.0788244924177365e-05,
386
+ "loss": 0.024,
387
+ "step": 6300
388
+ },
389
+ {
390
+ "epoch": 0.86,
391
+ "learning_rate": 4.0513561593930325e-05,
392
+ "loss": 0.0067,
393
+ "step": 6400
394
+ },
395
+ {
396
+ "epoch": 0.87,
397
+ "learning_rate": 4.023579826760924e-05,
398
+ "loss": 0.0102,
399
+ "step": 6500
400
+ },
401
+ {
402
+ "epoch": 0.89,
403
+ "learning_rate": 3.995501009115527e-05,
404
+ "loss": 0.013,
405
+ "step": 6600
406
+ },
407
+ {
408
+ "epoch": 0.9,
409
+ "learning_rate": 3.9674104896418544e-05,
410
+ "loss": 0.0133,
411
+ "step": 6700
412
+ },
413
+ {
414
+ "epoch": 0.91,
415
+ "learning_rate": 3.9387463695523555e-05,
416
+ "loss": 0.0087,
417
+ "step": 6800
418
+ },
419
+ {
420
+ "epoch": 0.93,
421
+ "learning_rate": 3.9097966069208193e-05,
422
+ "loss": 0.01,
423
+ "step": 6900
424
+ },
425
+ {
426
+ "epoch": 0.94,
427
+ "learning_rate": 3.880566949309125e-05,
428
+ "loss": 0.0113,
429
+ "step": 7000
430
+ },
431
+ {
432
+ "epoch": 0.96,
433
+ "learning_rate": 3.8513595749088484e-05,
434
+ "loss": 0.0101,
435
+ "step": 7100
436
+ },
437
+ {
438
+ "epoch": 0.97,
439
+ "learning_rate": 3.821590244319273e-05,
440
+ "loss": 0.0092,
441
+ "step": 7200
442
+ },
443
+ {
444
+ "epoch": 0.98,
445
+ "learning_rate": 3.791558530862982e-05,
446
+ "loss": 0.0176,
447
+ "step": 7300
448
+ },
449
+ {
450
+ "epoch": 1.0,
451
+ "learning_rate": 3.76127039690774e-05,
452
+ "loss": 0.0114,
453
+ "step": 7400
454
+ },
455
+ {
456
+ "epoch": 1.01,
457
+ "learning_rate": 3.7307318557299355e-05,
458
+ "loss": 0.0083,
459
+ "step": 7500
460
+ },
461
+ {
462
+ "epoch": 1.02,
463
+ "learning_rate": 3.699948970320738e-05,
464
+ "loss": 0.0067,
465
+ "step": 7600
466
+ },
467
+ {
468
+ "epoch": 1.04,
469
+ "learning_rate": 3.668927852182374e-05,
470
+ "loss": 0.0021,
471
+ "step": 7700
472
+ },
473
+ {
474
+ "epoch": 1.05,
475
+ "learning_rate": 3.637674660114774e-05,
476
+ "loss": 0.0087,
477
+ "step": 7800
478
+ },
479
+ {
480
+ "epoch": 1.06,
481
+ "learning_rate": 3.606195598992832e-05,
482
+ "loss": 0.005,
483
+ "step": 7900
484
+ },
485
+ {
486
+ "epoch": 1.08,
487
+ "learning_rate": 3.574496918534519e-05,
488
+ "loss": 0.014,
489
+ "step": 8000
490
+ },
491
+ {
492
+ "epoch": 1.09,
493
+ "learning_rate": 3.542584912060087e-05,
494
+ "loss": 0.0073,
495
+ "step": 8100
496
+ },
497
+ {
498
+ "epoch": 1.1,
499
+ "learning_rate": 3.510465915242623e-05,
500
+ "loss": 0.0073,
501
+ "step": 8200
502
+ },
503
+ {
504
+ "epoch": 1.12,
505
+ "learning_rate": 3.478146304850188e-05,
506
+ "loss": 0.0106,
507
+ "step": 8300
508
+ },
509
+ {
510
+ "epoch": 1.13,
511
+ "learning_rate": 3.4456324974798025e-05,
512
+ "loss": 0.0106,
513
+ "step": 8400
514
+ },
515
+ {
516
+ "epoch": 1.14,
517
+ "learning_rate": 3.412930948283528e-05,
518
+ "loss": 0.0036,
519
+ "step": 8500
520
+ },
521
+ {
522
+ "epoch": 1.16,
523
+ "learning_rate": 3.380048149686877e-05,
524
+ "loss": 0.0051,
525
+ "step": 8600
526
+ },
527
+ {
528
+ "epoch": 1.17,
529
+ "learning_rate": 3.3469906300998476e-05,
530
+ "loss": 0.0047,
531
+ "step": 8700
532
+ },
533
+ {
534
+ "epoch": 1.18,
535
+ "learning_rate": 3.313764952620792e-05,
536
+ "loss": 0.0035,
537
+ "step": 8800
538
+ },
539
+ {
540
+ "epoch": 1.2,
541
+ "learning_rate": 3.280377713733412e-05,
542
+ "loss": 0.0094,
543
+ "step": 8900
544
+ },
545
+ {
546
+ "epoch": 1.21,
547
+ "learning_rate": 3.246835541997116e-05,
548
+ "loss": 0.0077,
549
+ "step": 9000
550
+ },
551
+ {
552
+ "epoch": 1.22,
553
+ "learning_rate": 3.213145096731021e-05,
554
+ "loss": 0.0076,
555
+ "step": 9100
556
+ },
557
+ {
558
+ "epoch": 1.24,
559
+ "learning_rate": 3.1793130666918324e-05,
560
+ "loss": 0.0074,
561
+ "step": 9200
562
+ },
563
+ {
564
+ "epoch": 1.25,
565
+ "learning_rate": 3.145346168745891e-05,
566
+ "loss": 0.0072,
567
+ "step": 9300
568
+ },
569
+ {
570
+ "epoch": 1.26,
571
+ "learning_rate": 3.111251146535634e-05,
572
+ "loss": 0.0043,
573
+ "step": 9400
574
+ },
575
+ {
576
+ "epoch": 1.28,
577
+ "learning_rate": 3.077377511336779e-05,
578
+ "loss": 0.0071,
579
+ "step": 9500
580
+ },
581
+ {
582
+ "epoch": 1.29,
583
+ "learning_rate": 3.043047683848379e-05,
584
+ "loss": 0.0102,
585
+ "step": 9600
586
+ },
587
+ {
588
+ "epoch": 1.31,
589
+ "learning_rate": 3.0086100419987084e-05,
590
+ "loss": 0.005,
591
+ "step": 9700
592
+ },
593
+ {
594
+ "epoch": 1.32,
595
+ "learning_rate": 2.974071422889685e-05,
596
+ "loss": 0.0155,
597
+ "step": 9800
598
+ },
599
+ {
600
+ "epoch": 1.33,
601
+ "learning_rate": 2.9394386836708154e-05,
602
+ "loss": 0.0086,
603
+ "step": 9900
604
+ },
605
+ {
606
+ "epoch": 1.35,
607
+ "learning_rate": 2.9047187001778132e-05,
608
+ "loss": 0.0048,
609
+ "step": 10000
610
+ },
611
+ {
612
+ "epoch": 1.36,
613
+ "learning_rate": 2.8699183655674938e-05,
614
+ "loss": 0.0085,
615
+ "step": 10100
616
+ },
617
+ {
618
+ "epoch": 1.37,
619
+ "learning_rate": 2.835044588949241e-05,
620
+ "loss": 0.0091,
621
+ "step": 10200
622
+ },
623
+ {
624
+ "epoch": 1.39,
625
+ "learning_rate": 2.8001042940132995e-05,
626
+ "loss": 0.0089,
627
+ "step": 10300
628
+ },
629
+ {
630
+ "epoch": 1.4,
631
+ "learning_rate": 2.7651044176561748e-05,
632
+ "loss": 0.0093,
633
+ "step": 10400
634
+ },
635
+ {
636
+ "epoch": 1.41,
637
+ "learning_rate": 2.7300519086034166e-05,
638
+ "loss": 0.0073,
639
+ "step": 10500
640
+ },
641
+ {
642
+ "epoch": 1.43,
643
+ "learning_rate": 2.6949537260300395e-05,
644
+ "loss": 0.0029,
645
+ "step": 10600
646
+ },
647
+ {
648
+ "epoch": 1.44,
649
+ "learning_rate": 2.6598168381788864e-05,
650
+ "loss": 0.0027,
651
+ "step": 10700
652
+ },
653
+ {
654
+ "epoch": 1.45,
655
+ "learning_rate": 2.6246482209771783e-05,
656
+ "loss": 0.011,
657
+ "step": 10800
658
+ },
659
+ {
660
+ "epoch": 1.47,
661
+ "learning_rate": 2.5894548566515485e-05,
662
+ "loss": 0.0108,
663
+ "step": 10900
664
+ },
665
+ {
666
+ "epoch": 1.48,
667
+ "learning_rate": 2.554243732341816e-05,
668
+ "loss": 0.0033,
669
+ "step": 11000
670
+ },
671
+ {
672
+ "epoch": 1.49,
673
+ "learning_rate": 2.519021838713791e-05,
674
+ "loss": 0.0048,
675
+ "step": 11100
676
+ },
677
+ {
678
+ "epoch": 1.51,
679
+ "learning_rate": 2.483796168571378e-05,
680
+ "loss": 0.0015,
681
+ "step": 11200
682
+ },
683
+ {
684
+ "epoch": 1.52,
685
+ "learning_rate": 2.4485737154682554e-05,
686
+ "loss": 0.0053,
687
+ "step": 11300
688
+ },
689
+ {
690
+ "epoch": 1.53,
691
+ "learning_rate": 2.4133614723194047e-05,
692
+ "loss": 0.0043,
693
+ "step": 11400
694
+ },
695
+ {
696
+ "epoch": 1.55,
697
+ "learning_rate": 2.378166430012766e-05,
698
+ "loss": 0.0086,
699
+ "step": 11500
700
+ },
701
+ {
702
+ "epoch": 1.56,
703
+ "learning_rate": 2.3429955760212966e-05,
704
+ "loss": 0.0077,
705
+ "step": 11600
706
+ },
707
+ {
708
+ "epoch": 1.57,
709
+ "learning_rate": 2.307855893015712e-05,
710
+ "loss": 0.0066,
711
+ "step": 11700
712
+ },
713
+ {
714
+ "epoch": 1.59,
715
+ "learning_rate": 2.272754357478172e-05,
716
+ "loss": 0.0055,
717
+ "step": 11800
718
+ },
719
+ {
720
+ "epoch": 1.6,
721
+ "learning_rate": 2.237697938317202e-05,
722
+ "loss": 0.0067,
723
+ "step": 11900
724
+ },
725
+ {
726
+ "epoch": 1.61,
727
+ "learning_rate": 2.202693595484113e-05,
728
+ "loss": 0.0082,
729
+ "step": 12000
730
+ },
731
+ {
732
+ "epoch": 1.63,
733
+ "learning_rate": 2.1680974167907623e-05,
734
+ "loss": 0.0101,
735
+ "step": 12100
736
+ },
737
+ {
738
+ "epoch": 1.64,
739
+ "learning_rate": 2.1332173697925385e-05,
740
+ "loss": 0.0019,
741
+ "step": 12200
742
+ },
743
+ {
744
+ "epoch": 1.65,
745
+ "learning_rate": 2.09841014224678e-05,
746
+ "loss": 0.0106,
747
+ "step": 12300
748
+ },
749
+ {
750
+ "epoch": 1.67,
751
+ "learning_rate": 2.063682644631365e-05,
752
+ "loss": 0.0051,
753
+ "step": 12400
754
+ },
755
+ {
756
+ "epoch": 1.68,
757
+ "learning_rate": 2.0290417715949304e-05,
758
+ "loss": 0.0076,
759
+ "step": 12500
760
+ },
761
+ {
762
+ "epoch": 1.7,
763
+ "learning_rate": 1.994494400588042e-05,
764
+ "loss": 0.0037,
765
+ "step": 12600
766
+ },
767
+ {
768
+ "epoch": 1.71,
769
+ "learning_rate": 1.9600473904977725e-05,
770
+ "loss": 0.0073,
771
+ "step": 12700
772
+ },
773
+ {
774
+ "epoch": 1.72,
775
+ "learning_rate": 1.9257075802859685e-05,
776
+ "loss": 0.0052,
777
+ "step": 12800
778
+ },
779
+ {
780
+ "epoch": 1.74,
781
+ "learning_rate": 1.89148178763147e-05,
782
+ "loss": 0.0038,
783
+ "step": 12900
784
+ },
785
+ {
786
+ "epoch": 1.75,
787
+ "learning_rate": 1.857376807576563e-05,
788
+ "loss": 0.0044,
789
+ "step": 13000
790
+ },
791
+ {
792
+ "epoch": 1.76,
793
+ "learning_rate": 1.8233994111779146e-05,
794
+ "loss": 0.0031,
795
+ "step": 13100
796
+ },
797
+ {
798
+ "epoch": 1.78,
799
+ "learning_rate": 1.7895563441622803e-05,
800
+ "loss": 0.0067,
801
+ "step": 13200
802
+ },
803
+ {
804
+ "epoch": 1.79,
805
+ "learning_rate": 1.7558543255872352e-05,
806
+ "loss": 0.0096,
807
+ "step": 13300
808
+ },
809
+ {
810
+ "epoch": 1.8,
811
+ "learning_rate": 1.7223000465072e-05,
812
+ "loss": 0.0063,
813
+ "step": 13400
814
+ },
815
+ {
816
+ "epoch": 1.82,
817
+ "learning_rate": 1.68890016864503e-05,
818
+ "loss": 0.0064,
819
+ "step": 13500
820
+ },
821
+ {
822
+ "epoch": 1.83,
823
+ "learning_rate": 1.6556613230694243e-05,
824
+ "loss": 0.0047,
825
+ "step": 13600
826
+ },
827
+ {
828
+ "epoch": 1.84,
829
+ "learning_rate": 1.6225901088784207e-05,
830
+ "loss": 0.0023,
831
+ "step": 13700
832
+ },
833
+ {
834
+ "epoch": 1.86,
835
+ "learning_rate": 1.58969309188924e-05,
836
+ "loss": 0.0064,
837
+ "step": 13800
838
+ },
839
+ {
840
+ "epoch": 1.87,
841
+ "learning_rate": 1.556976803334737e-05,
842
+ "loss": 0.004,
843
+ "step": 13900
844
+ },
845
+ {
846
+ "epoch": 1.88,
847
+ "learning_rate": 1.5244477385667167e-05,
848
+ "loss": 0.0016,
849
+ "step": 14000
850
+ },
851
+ {
852
+ "epoch": 1.9,
853
+ "learning_rate": 1.4921123557663763e-05,
854
+ "loss": 0.008,
855
+ "step": 14100
856
+ },
857
+ {
858
+ "epoch": 1.91,
859
+ "learning_rate": 1.4599770746621238e-05,
860
+ "loss": 0.0047,
861
+ "step": 14200
862
+ },
863
+ {
864
+ "epoch": 1.92,
865
+ "learning_rate": 1.4280482752550327e-05,
866
+ "loss": 0.0056,
867
+ "step": 14300
868
+ },
869
+ {
870
+ "epoch": 1.94,
871
+ "learning_rate": 1.396332296552188e-05,
872
+ "loss": 0.0065,
873
+ "step": 14400
874
+ },
875
+ {
876
+ "epoch": 1.95,
877
+ "learning_rate": 1.3648354353081588e-05,
878
+ "loss": 0.004,
879
+ "step": 14500
880
+ },
881
+ {
882
+ "epoch": 1.96,
883
+ "learning_rate": 1.333563944774876e-05,
884
+ "loss": 0.0065,
885
+ "step": 14600
886
+ },
887
+ {
888
+ "epoch": 1.98,
889
+ "learning_rate": 1.3028332659827522e-05,
890
+ "loss": 0.0026,
891
+ "step": 14700
892
+ },
893
+ {
894
+ "epoch": 1.99,
895
+ "learning_rate": 1.2720286886495473e-05,
896
+ "loss": 0.008,
897
+ "step": 14800
898
+ },
899
+ {
900
+ "epoch": 2.0,
901
+ "learning_rate": 1.2414679074810755e-05,
902
+ "loss": 0.0053,
903
+ "step": 14900
904
+ },
905
+ {
906
+ "epoch": 2.02,
907
+ "learning_rate": 1.211156989883942e-05,
908
+ "loss": 0.0024,
909
+ "step": 15000
910
+ },
911
+ {
912
+ "epoch": 2.03,
913
+ "learning_rate": 1.1811019536579015e-05,
914
+ "loss": 0.0014,
915
+ "step": 15100
916
+ },
917
+ {
918
+ "epoch": 2.05,
919
+ "learning_rate": 1.1513087658011207e-05,
920
+ "loss": 0.0005,
921
+ "step": 15200
922
+ },
923
+ {
924
+ "epoch": 2.06,
925
+ "learning_rate": 1.1217833413255133e-05,
926
+ "loss": 0.0002,
927
+ "step": 15300
928
+ },
929
+ {
930
+ "epoch": 2.07,
931
+ "learning_rate": 1.0925315420823949e-05,
932
+ "loss": 0.0023,
933
+ "step": 15400
934
+ },
935
+ {
936
+ "epoch": 2.09,
937
+ "learning_rate": 1.063559175598702e-05,
938
+ "loss": 0.0003,
939
+ "step": 15500
940
+ },
941
+ {
942
+ "epoch": 2.1,
943
+ "learning_rate": 1.0348719939239885e-05,
944
+ "loss": 0.0009,
945
+ "step": 15600
946
+ },
947
+ {
948
+ "epoch": 2.11,
949
+ "learning_rate": 1.0064756924884342e-05,
950
+ "loss": 0.0059,
951
+ "step": 15700
952
+ },
953
+ {
954
+ "epoch": 2.13,
955
+ "learning_rate": 9.783759089721054e-06,
956
+ "loss": 0.0005,
957
+ "step": 15800
958
+ },
959
+ {
960
+ "epoch": 2.14,
961
+ "learning_rate": 9.505782221856696e-06,
962
+ "loss": 0.0009,
963
+ "step": 15900
964
+ },
965
+ {
966
+ "epoch": 2.15,
967
+ "learning_rate": 9.230881509628037e-06,
968
+ "loss": 0.0013,
969
+ "step": 16000
970
+ },
971
+ {
972
+ "epoch": 2.17,
973
+ "learning_rate": 8.959111530645085e-06,
974
+ "loss": 0.0017,
975
+ "step": 16100
976
+ },
977
+ {
978
+ "epoch": 2.18,
979
+ "learning_rate": 8.690526240955454e-06,
980
+ "loss": 0.0025,
981
+ "step": 16200
982
+ },
983
+ {
984
+ "epoch": 2.19,
985
+ "learning_rate": 8.425178964332225e-06,
986
+ "loss": 0.005,
987
+ "step": 16300
988
+ },
989
+ {
990
+ "epoch": 2.21,
991
+ "learning_rate": 8.163122381687191e-06,
992
+ "loss": 0.0039,
993
+ "step": 16400
994
+ },
995
+ {
996
+ "epoch": 2.22,
997
+ "learning_rate": 7.90440852061189e-06,
998
+ "loss": 0.0002,
999
+ "step": 16500
1000
+ },
1001
+ {
1002
+ "epoch": 2.23,
1003
+ "learning_rate": 7.64908874504823e-06,
1004
+ "loss": 0.0014,
1005
+ "step": 16600
1006
+ },
1007
+ {
1008
+ "epoch": 2.25,
1009
+ "learning_rate": 7.3972137450908895e-06,
1010
+ "loss": 0.0008,
1011
+ "step": 16700
1012
+ },
1013
+ {
1014
+ "epoch": 2.26,
1015
+ "learning_rate": 7.148833526923606e-06,
1016
+ "loss": 0.0031,
1017
+ "step": 16800
1018
+ },
1019
+ {
1020
+ "epoch": 2.27,
1021
+ "learning_rate": 6.9039974028910575e-06,
1022
+ "loss": 0.0022,
1023
+ "step": 16900
1024
+ },
1025
+ {
1026
+ "epoch": 2.29,
1027
+ "learning_rate": 6.6627539817086775e-06,
1028
+ "loss": 0.0006,
1029
+ "step": 17000
1030
+ },
1031
+ {
1032
+ "epoch": 2.3,
1033
+ "learning_rate": 6.425151158812067e-06,
1034
+ "loss": 0.0001,
1035
+ "step": 17100
1036
+ },
1037
+ {
1038
+ "epoch": 2.31,
1039
+ "learning_rate": 6.191236106848014e-06,
1040
+ "loss": 0.0001,
1041
+ "step": 17200
1042
+ },
1043
+ {
1044
+ "epoch": 2.33,
1045
+ "learning_rate": 5.961055266309076e-06,
1046
+ "loss": 0.0055,
1047
+ "step": 17300
1048
+ },
1049
+ {
1050
+ "epoch": 2.34,
1051
+ "learning_rate": 5.73465433631348e-06,
1052
+ "loss": 0.0006,
1053
+ "step": 17400
1054
+ },
1055
+ {
1056
+ "epoch": 2.35,
1057
+ "learning_rate": 5.512078265532167e-06,
1058
+ "loss": 0.0001,
1059
+ "step": 17500
1060
+ },
1061
+ {
1062
+ "epoch": 2.37,
1063
+ "learning_rate": 5.293371243264947e-06,
1064
+ "loss": 0.0,
1065
+ "step": 17600
1066
+ },
1067
+ {
1068
+ "epoch": 2.38,
1069
+ "learning_rate": 5.078576690667289e-06,
1070
+ "loss": 0.001,
1071
+ "step": 17700
1072
+ },
1073
+ {
1074
+ "epoch": 2.39,
1075
+ "learning_rate": 4.8677372521297e-06,
1076
+ "loss": 0.0003,
1077
+ "step": 17800
1078
+ },
1079
+ {
1080
+ "epoch": 2.41,
1081
+ "learning_rate": 4.660894786811287e-06,
1082
+ "loss": 0.0027,
1083
+ "step": 17900
1084
+ },
1085
+ {
1086
+ "epoch": 2.42,
1087
+ "learning_rate": 4.4580903603291895e-06,
1088
+ "loss": 0.0027,
1089
+ "step": 18000
1090
+ },
1091
+ {
1092
+ "epoch": 2.44,
1093
+ "learning_rate": 4.259364236605634e-06,
1094
+ "loss": 0.0004,
1095
+ "step": 18100
1096
+ },
1097
+ {
1098
+ "epoch": 2.45,
1099
+ "learning_rate": 4.064755869874084e-06,
1100
+ "loss": 0.0008,
1101
+ "step": 18200
1102
+ },
1103
+ {
1104
+ "epoch": 2.46,
1105
+ "learning_rate": 3.874303896846149e-06,
1106
+ "loss": 0.0011,
1107
+ "step": 18300
1108
+ },
1109
+ {
1110
+ "epoch": 2.48,
1111
+ "learning_rate": 3.6880461290408507e-06,
1112
+ "loss": 0.0004,
1113
+ "step": 18400
1114
+ },
1115
+ {
1116
+ "epoch": 2.49,
1117
+ "learning_rate": 3.5060195452776557e-06,
1118
+ "loss": 0.0015,
1119
+ "step": 18500
1120
+ },
1121
+ {
1122
+ "epoch": 2.5,
1123
+ "learning_rate": 3.3282602843348943e-06,
1124
+ "loss": 0.0003,
1125
+ "step": 18600
1126
+ },
1127
+ {
1128
+ "epoch": 2.52,
1129
+ "learning_rate": 3.1548036377748863e-06,
1130
+ "loss": 0.0001,
1131
+ "step": 18700
1132
+ },
1133
+ {
1134
+ "epoch": 2.53,
1135
+ "learning_rate": 2.9856840429373144e-06,
1136
+ "loss": 0.0,
1137
+ "step": 18800
1138
+ },
1139
+ {
1140
+ "epoch": 2.54,
1141
+ "learning_rate": 2.820935076102205e-06,
1142
+ "loss": 0.0021,
1143
+ "step": 18900
1144
+ },
1145
+ {
1146
+ "epoch": 2.56,
1147
+ "learning_rate": 2.6621710003546298e-06,
1148
+ "loss": 0.0019,
1149
+ "step": 19000
1150
+ },
1151
+ {
1152
+ "epoch": 2.57,
1153
+ "learning_rate": 2.50621603456484e-06,
1154
+ "loss": 0.0,
1155
+ "step": 19100
1156
+ },
1157
+ {
1158
+ "epoch": 2.58,
1159
+ "learning_rate": 2.356219574465643e-06,
1160
+ "loss": 0.0013,
1161
+ "step": 19200
1162
+ },
1163
+ {
1164
+ "epoch": 2.6,
1165
+ "learning_rate": 2.2091812188310717e-06,
1166
+ "loss": 0.0014,
1167
+ "step": 19300
1168
+ },
1169
+ {
1170
+ "epoch": 2.61,
1171
+ "learning_rate": 2.0666676547438866e-06,
1172
+ "loss": 0.0013,
1173
+ "step": 19400
1174
+ },
1175
+ {
1176
+ "epoch": 2.62,
1177
+ "learning_rate": 1.9287071762367076e-06,
1178
+ "loss": 0.0007,
1179
+ "step": 19500
1180
+ },
1181
+ {
1182
+ "epoch": 2.64,
1183
+ "learning_rate": 1.7953271733920502e-06,
1184
+ "loss": 0.0003,
1185
+ "step": 19600
1186
+ },
1187
+ {
1188
+ "epoch": 2.65,
1189
+ "learning_rate": 1.6665541269044155e-06,
1190
+ "loss": 0.0016,
1191
+ "step": 19700
1192
+ },
1193
+ {
1194
+ "epoch": 2.66,
1195
+ "learning_rate": 1.5424136028229118e-06,
1196
+ "loss": 0.0007,
1197
+ "step": 19800
1198
+ },
1199
+ {
1200
+ "epoch": 2.68,
1201
+ "learning_rate": 1.4229302474755013e-06,
1202
+ "loss": 0.0027,
1203
+ "step": 19900
1204
+ },
1205
+ {
1206
+ "epoch": 2.69,
1207
+ "learning_rate": 1.3081277825757992e-06,
1208
+ "loss": 0.0011,
1209
+ "step": 20000
1210
+ },
1211
+ {
1212
+ "epoch": 2.7,
1213
+ "learning_rate": 1.1980290005134843e-06,
1214
+ "loss": 0.0017,
1215
+ "step": 20100
1216
+ },
1217
+ {
1218
+ "epoch": 2.72,
1219
+ "learning_rate": 1.0926557598292002e-06,
1220
+ "loss": 0.0001,
1221
+ "step": 20200
1222
+ },
1223
+ {
1224
+ "epoch": 2.73,
1225
+ "learning_rate": 9.92028980874829e-07,
1226
+ "loss": 0.0025,
1227
+ "step": 20300
1228
+ },
1229
+ {
1230
+ "epoch": 2.74,
1231
+ "learning_rate": 8.961686416600834e-07,
1232
+ "loss": 0.0006,
1233
+ "step": 20400
1234
+ },
1235
+ {
1236
+ "epoch": 2.76,
1237
+ "learning_rate": 8.05093773886137e-07,
1238
+ "loss": 0.0023,
1239
+ "step": 20500
1240
+ },
1241
+ {
1242
+ "epoch": 2.77,
1243
+ "learning_rate": 7.18822459167165e-07,
1244
+ "loss": 0.0009,
1245
+ "step": 20600
1246
+ },
1247
+ {
1248
+ "epoch": 2.78,
1249
+ "learning_rate": 6.373718254404887e-07,
1250
+ "loss": 0.0005,
1251
+ "step": 20700
1252
+ },
1253
+ {
1254
+ "epoch": 2.8,
1255
+ "learning_rate": 5.607580435660759e-07,
1256
+ "loss": 0.0008,
1257
+ "step": 20800
1258
+ },
1259
+ {
1260
+ "epoch": 2.81,
1261
+ "learning_rate": 4.889963241160366e-07,
1262
+ "loss": 0.0005,
1263
+ "step": 20900
1264
+ },
1265
+ {
1266
+ "epoch": 2.83,
1267
+ "learning_rate": 4.2210091435480324e-07,
1268
+ "loss": 0.0009,
1269
+ "step": 21000
1270
+ }
1271
+ ],
1272
+ "logging_steps": 100,
1273
+ "max_steps": 22296,
1274
+ "num_input_tokens_seen": 0,
1275
+ "num_train_epochs": 3,
1276
+ "save_steps": 3000,
1277
+ "total_flos": 5.871674650524254e+18,
1278
+ "train_batch_size": 4,
1279
+ "trial_name": null,
1280
+ "trial_params": null
1281
+ }
LLM-Detector-V7-11w/checkpoint-21000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fda912c16bf2c6e8ac3158b354c96cabf8fd0eff786de104f90c23c31741ef25
3
+ size 4856
LLM-Detector-V7-11w/checkpoint-3000/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: ./Mistral-7B-Instruct-v0.1
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
LLM-Detector-V7-11w/checkpoint-3000/adapter_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./Mistral-7B-Instruct-v0.1",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 16,
13
+ "lora_dropout": 0.0,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 8,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "q_proj"
24
+ ],
25
+ "task_type": "CAUSAL_LM"
26
+ }