wangrongsheng
commited on
Commit
·
5944a68
1
Parent(s):
320ce72
add v5
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- LLM-Detector-V5-11w/README.md +56 -0
- LLM-Detector-V5-11w/adapter_config.json +22 -0
- LLM-Detector-V5-11w/adapter_model.bin +3 -0
- LLM-Detector-V5-11w/all_results.json +7 -0
- LLM-Detector-V5-11w/checkpoint-12000/README.md +219 -0
- LLM-Detector-V5-11w/checkpoint-12000/adapter_config.json +22 -0
- LLM-Detector-V5-11w/checkpoint-12000/adapter_model.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-12000/optimizer.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-12000/qwen.tiktoken +0 -0
- LLM-Detector-V5-11w/checkpoint-12000/rng_state.pth +3 -0
- LLM-Detector-V5-11w/checkpoint-12000/scheduler.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-12000/special_tokens_map.json +7 -0
- LLM-Detector-V5-11w/checkpoint-12000/tokenization_qwen.py +276 -0
- LLM-Detector-V5-11w/checkpoint-12000/tokenizer_config.json +13 -0
- LLM-Detector-V5-11w/checkpoint-12000/trainer_state.json +739 -0
- LLM-Detector-V5-11w/checkpoint-12000/training_args.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-15000/README.md +219 -0
- LLM-Detector-V5-11w/checkpoint-15000/adapter_config.json +22 -0
- LLM-Detector-V5-11w/checkpoint-15000/adapter_model.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-15000/optimizer.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-15000/qwen.tiktoken +0 -0
- LLM-Detector-V5-11w/checkpoint-15000/rng_state.pth +3 -0
- LLM-Detector-V5-11w/checkpoint-15000/scheduler.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-15000/special_tokens_map.json +7 -0
- LLM-Detector-V5-11w/checkpoint-15000/tokenization_qwen.py +276 -0
- LLM-Detector-V5-11w/checkpoint-15000/tokenizer_config.json +13 -0
- LLM-Detector-V5-11w/checkpoint-15000/trainer_state.json +919 -0
- LLM-Detector-V5-11w/checkpoint-15000/training_args.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-18000/README.md +219 -0
- LLM-Detector-V5-11w/checkpoint-18000/adapter_config.json +22 -0
- LLM-Detector-V5-11w/checkpoint-18000/adapter_model.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-18000/optimizer.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-18000/qwen.tiktoken +0 -0
- LLM-Detector-V5-11w/checkpoint-18000/rng_state.pth +3 -0
- LLM-Detector-V5-11w/checkpoint-18000/scheduler.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-18000/special_tokens_map.json +7 -0
- LLM-Detector-V5-11w/checkpoint-18000/tokenization_qwen.py +276 -0
- LLM-Detector-V5-11w/checkpoint-18000/tokenizer_config.json +13 -0
- LLM-Detector-V5-11w/checkpoint-18000/trainer_state.json +1099 -0
- LLM-Detector-V5-11w/checkpoint-18000/training_args.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-21000/README.md +219 -0
- LLM-Detector-V5-11w/checkpoint-21000/adapter_config.json +22 -0
- LLM-Detector-V5-11w/checkpoint-21000/adapter_model.bin +3 -0
- LLM-Detector-V5-11w/checkpoint-21000/optimizer.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-21000/qwen.tiktoken +0 -0
- LLM-Detector-V5-11w/checkpoint-21000/rng_state.pth +3 -0
- LLM-Detector-V5-11w/checkpoint-21000/scheduler.pt +3 -0
- LLM-Detector-V5-11w/checkpoint-21000/special_tokens_map.json +7 -0
- LLM-Detector-V5-11w/checkpoint-21000/tokenization_qwen.py +276 -0
- LLM-Detector-V5-11w/checkpoint-21000/tokenizer_config.json +13 -0
LLM-Detector-V5-11w/README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: ./Qwen-14B-Chat
|
4 |
+
tags:
|
5 |
+
- llama-factory
|
6 |
+
- lora
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: qwen-14b
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# qwen-14b
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [./Qwen-14B-Chat](https://huggingface.co/./Qwen-14B-Chat) on the ta, the tb, the tc, the td, the te, the tf, the tg and the th datasets.
|
19 |
+
|
20 |
+
## Model description
|
21 |
+
|
22 |
+
More information needed
|
23 |
+
|
24 |
+
## Intended uses & limitations
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Training and evaluation data
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training procedure
|
33 |
+
|
34 |
+
### Training hyperparameters
|
35 |
+
|
36 |
+
The following hyperparameters were used during training:
|
37 |
+
- learning_rate: 5e-05
|
38 |
+
- train_batch_size: 4
|
39 |
+
- eval_batch_size: 8
|
40 |
+
- seed: 42
|
41 |
+
- gradient_accumulation_steps: 4
|
42 |
+
- total_train_batch_size: 16
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: cosine
|
45 |
+
- num_epochs: 3.0
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
### Framework versions
|
52 |
+
|
53 |
+
- Transformers 4.33.0
|
54 |
+
- Pytorch 2.1.1+cu121
|
55 |
+
- Datasets 2.14.7
|
56 |
+
- Tokenizers 0.13.3
|
LLM-Detector-V5-11w/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-14B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V5-11w/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dde59642634b55ccc32fb6fa05297f77f206ce08fa02e68f91dea53f86214102
|
3 |
+
size 26243102
|
LLM-Detector-V5-11w/all_results.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 3.0,
|
3 |
+
"train_loss": 0.018557672745323963,
|
4 |
+
"train_runtime": 121687.4213,
|
5 |
+
"train_samples_per_second": 2.932,
|
6 |
+
"train_steps_per_second": 0.183
|
7 |
+
}
|
LLM-Detector-V5-11w/checkpoint-12000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-14B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V5-11w/checkpoint-12000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-14B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V5-11w/checkpoint-12000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be4e56d160cf7490138ad2318e65a682c847563f5905bfc743a291b2b35caa7b
|
3 |
+
size 26243102
|
LLM-Detector-V5-11w/checkpoint-12000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b33c417ba7224c09cfc45a2f433ce271e77b9f3643be2b792ba5258b20cd9662
|
3 |
+
size 52496442
|
LLM-Detector-V5-11w/checkpoint-12000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V5-11w/checkpoint-12000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:210d36a326ab9ae3f9794cdb713f70f85060cd21ff6d38241d3c5871436a7529
|
3 |
+
size 14244
|
LLM-Detector-V5-11w/checkpoint-12000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67f15ee785078ff296bbc591ab3e9dfc50cf8cddc42a477dfe677cda389ba0dd
|
3 |
+
size 1064
|
LLM-Detector-V5-11w/checkpoint-12000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V5-11w/checkpoint-12000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V5-11w/checkpoint-12000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V5-11w/checkpoint-12000/trainer_state.json
ADDED
@@ -0,0 +1,739 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.6144764723689078,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 12000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.9997567688496474e-05,
|
14 |
+
"loss": 2.8699,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.03,
|
19 |
+
"learning_rate": 4.9990172715142793e-05,
|
20 |
+
"loss": 0.0389,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.04,
|
25 |
+
"learning_rate": 4.997781629993153e-05,
|
26 |
+
"loss": 0.0301,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.05,
|
31 |
+
"learning_rate": 4.9960500896052476e-05,
|
32 |
+
"loss": 0.0244,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.07,
|
37 |
+
"learning_rate": 4.993822994123172e-05,
|
38 |
+
"loss": 0.0151,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.08,
|
43 |
+
"learning_rate": 4.9911007857049264e-05,
|
44 |
+
"loss": 0.012,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.09,
|
49 |
+
"learning_rate": 4.987884004806111e-05,
|
50 |
+
"loss": 0.0268,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.11,
|
55 |
+
"learning_rate": 4.984173290072626e-05,
|
56 |
+
"loss": 0.0187,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.12,
|
61 |
+
"learning_rate": 4.979969378213884e-05,
|
62 |
+
"loss": 0.0166,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.13,
|
67 |
+
"learning_rate": 4.975273103856537e-05,
|
68 |
+
"loss": 0.022,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15,
|
73 |
+
"learning_rate": 4.970085399378785e-05,
|
74 |
+
"loss": 0.0194,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.16,
|
79 |
+
"learning_rate": 4.964407294725254e-05,
|
80 |
+
"loss": 0.0182,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.17,
|
85 |
+
"learning_rate": 4.958239917202523e-05,
|
86 |
+
"loss": 0.0204,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.19,
|
91 |
+
"learning_rate": 4.9515844912553106e-05,
|
92 |
+
"loss": 0.013,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.2,
|
97 |
+
"learning_rate": 4.944442338223378e-05,
|
98 |
+
"loss": 0.0107,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.22,
|
103 |
+
"learning_rate": 4.9368148760792e-05,
|
104 |
+
"loss": 0.0156,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.23,
|
109 |
+
"learning_rate": 4.9287036191464414e-05,
|
110 |
+
"loss": 0.0141,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.24,
|
115 |
+
"learning_rate": 4.9201101777993116e-05,
|
116 |
+
"loss": 0.0104,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.26,
|
121 |
+
"learning_rate": 4.911036258142853e-05,
|
122 |
+
"loss": 0.0087,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.27,
|
127 |
+
"learning_rate": 4.9014836616742065e-05,
|
128 |
+
"loss": 0.013,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28,
|
133 |
+
"learning_rate": 4.891454284924965e-05,
|
134 |
+
"loss": 0.0194,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.3,
|
139 |
+
"learning_rate": 4.8809501190846284e-05,
|
140 |
+
"loss": 0.0131,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.31,
|
145 |
+
"learning_rate": 4.8699732496052965e-05,
|
146 |
+
"loss": 0.0135,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.32,
|
151 |
+
"learning_rate": 4.858525855787619e-05,
|
152 |
+
"loss": 0.0106,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.34,
|
157 |
+
"learning_rate": 4.846610210348137e-05,
|
158 |
+
"loss": 0.0089,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.35,
|
163 |
+
"learning_rate": 4.8342286789680605e-05,
|
164 |
+
"loss": 0.0086,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.36,
|
169 |
+
"learning_rate": 4.8213837198235996e-05,
|
170 |
+
"loss": 0.0035,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.38,
|
175 |
+
"learning_rate": 4.8080778830979276e-05,
|
176 |
+
"loss": 0.0121,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.39,
|
181 |
+
"learning_rate": 4.794313810474878e-05,
|
182 |
+
"loss": 0.0146,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.4,
|
187 |
+
"learning_rate": 4.780094234614479e-05,
|
188 |
+
"loss": 0.0047,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.42,
|
193 |
+
"learning_rate": 4.765421978610418e-05,
|
194 |
+
"loss": 0.0096,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.43,
|
199 |
+
"learning_rate": 4.750299955429562e-05,
|
200 |
+
"loss": 0.0116,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.44,
|
205 |
+
"learning_rate": 4.734731167333625e-05,
|
206 |
+
"loss": 0.0192,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.46,
|
211 |
+
"learning_rate": 4.718718705283113e-05,
|
212 |
+
"loss": 0.0111,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.47,
|
217 |
+
"learning_rate": 4.702265748323661e-05,
|
218 |
+
"loss": 0.0114,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.48,
|
223 |
+
"learning_rate": 4.685375562954876e-05,
|
224 |
+
"loss": 0.0113,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.5,
|
229 |
+
"learning_rate": 4.668051502481818e-05,
|
230 |
+
"loss": 0.0097,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.51,
|
235 |
+
"learning_rate": 4.650297006349257e-05,
|
236 |
+
"loss": 0.0094,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.52,
|
241 |
+
"learning_rate": 4.63211559945881e-05,
|
242 |
+
"loss": 0.0059,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.54,
|
247 |
+
"learning_rate": 4.613699021830524e-05,
|
248 |
+
"loss": 0.0195,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.55,
|
253 |
+
"learning_rate": 4.59467888395669e-05,
|
254 |
+
"loss": 0.0088,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.57,
|
259 |
+
"learning_rate": 4.575242877508777e-05,
|
260 |
+
"loss": 0.0087,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.58,
|
265 |
+
"learning_rate": 4.5553948612282607e-05,
|
266 |
+
"loss": 0.0088,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.59,
|
271 |
+
"learning_rate": 4.5351387756552846e-05,
|
272 |
+
"loss": 0.0122,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.61,
|
277 |
+
"learning_rate": 4.51447864234632e-05,
|
278 |
+
"loss": 0.0081,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.62,
|
283 |
+
"learning_rate": 4.4934185630757484e-05,
|
284 |
+
"loss": 0.0079,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.63,
|
289 |
+
"learning_rate": 4.4719627190215064e-05,
|
290 |
+
"loss": 0.011,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.65,
|
295 |
+
"learning_rate": 4.450115369934976e-05,
|
296 |
+
"loss": 0.0146,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.66,
|
301 |
+
"learning_rate": 4.427880853295274e-05,
|
302 |
+
"loss": 0.0057,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.67,
|
307 |
+
"learning_rate": 4.4052635834481025e-05,
|
308 |
+
"loss": 0.0051,
|
309 |
+
"step": 5000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.69,
|
313 |
+
"learning_rate": 4.3822680507293455e-05,
|
314 |
+
"loss": 0.006,
|
315 |
+
"step": 5100
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.7,
|
319 |
+
"learning_rate": 4.358898820573581e-05,
|
320 |
+
"loss": 0.0127,
|
321 |
+
"step": 5200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.71,
|
325 |
+
"learning_rate": 4.3351605326076724e-05,
|
326 |
+
"loss": 0.0062,
|
327 |
+
"step": 5300
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.73,
|
331 |
+
"learning_rate": 4.3110578997296416e-05,
|
332 |
+
"loss": 0.0157,
|
333 |
+
"step": 5400
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.74,
|
337 |
+
"learning_rate": 4.286595707172986e-05,
|
338 |
+
"loss": 0.0111,
|
339 |
+
"step": 5500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.75,
|
343 |
+
"learning_rate": 4.261778811556646e-05,
|
344 |
+
"loss": 0.0141,
|
345 |
+
"step": 5600
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.77,
|
349 |
+
"learning_rate": 4.236612139920786e-05,
|
350 |
+
"loss": 0.0093,
|
351 |
+
"step": 5700
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.78,
|
355 |
+
"learning_rate": 4.2111006887486035e-05,
|
356 |
+
"loss": 0.0091,
|
357 |
+
"step": 5800
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.79,
|
361 |
+
"learning_rate": 4.185249522974346e-05,
|
362 |
+
"loss": 0.0043,
|
363 |
+
"step": 5900
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.81,
|
367 |
+
"learning_rate": 4.159063774977748e-05,
|
368 |
+
"loss": 0.0072,
|
369 |
+
"step": 6000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.82,
|
373 |
+
"learning_rate": 4.1325486435650625e-05,
|
374 |
+
"loss": 0.0063,
|
375 |
+
"step": 6100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.83,
|
379 |
+
"learning_rate": 4.105709392936914e-05,
|
380 |
+
"loss": 0.005,
|
381 |
+
"step": 6200
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.85,
|
385 |
+
"learning_rate": 4.0785513516431705e-05,
|
386 |
+
"loss": 0.0167,
|
387 |
+
"step": 6300
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.86,
|
391 |
+
"learning_rate": 4.051079911525031e-05,
|
392 |
+
"loss": 0.0068,
|
393 |
+
"step": 6400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.87,
|
397 |
+
"learning_rate": 4.023300526644557e-05,
|
398 |
+
"loss": 0.0076,
|
399 |
+
"step": 6500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.89,
|
403 |
+
"learning_rate": 3.9952187122018435e-05,
|
404 |
+
"loss": 0.0123,
|
405 |
+
"step": 6600
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.9,
|
409 |
+
"learning_rate": 3.966840043440054e-05,
|
410 |
+
"loss": 0.0074,
|
411 |
+
"step": 6700
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.91,
|
415 |
+
"learning_rate": 3.9381701545385384e-05,
|
416 |
+
"loss": 0.0045,
|
417 |
+
"step": 6800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.93,
|
421 |
+
"learning_rate": 3.9092147374942454e-05,
|
422 |
+
"loss": 0.0141,
|
423 |
+
"step": 6900
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.94,
|
427 |
+
"learning_rate": 3.87997954099166e-05,
|
428 |
+
"loss": 0.0036,
|
429 |
+
"step": 7000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.96,
|
433 |
+
"learning_rate": 3.8504703692614795e-05,
|
434 |
+
"loss": 0.0077,
|
435 |
+
"step": 7100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.97,
|
439 |
+
"learning_rate": 3.820693080928271e-05,
|
440 |
+
"loss": 0.0063,
|
441 |
+
"step": 7200
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.98,
|
445 |
+
"learning_rate": 3.790653587847325e-05,
|
446 |
+
"loss": 0.0078,
|
447 |
+
"step": 7300
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.0,
|
451 |
+
"learning_rate": 3.760357853930936e-05,
|
452 |
+
"loss": 0.004,
|
453 |
+
"step": 7400
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 1.01,
|
457 |
+
"learning_rate": 3.72981189396436e-05,
|
458 |
+
"loss": 0.003,
|
459 |
+
"step": 7500
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.02,
|
463 |
+
"learning_rate": 3.699021772411661e-05,
|
464 |
+
"loss": 0.0064,
|
465 |
+
"step": 7600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.04,
|
469 |
+
"learning_rate": 3.667993602211695e-05,
|
470 |
+
"loss": 0.0047,
|
471 |
+
"step": 7700
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.05,
|
475 |
+
"learning_rate": 3.636733543564481e-05,
|
476 |
+
"loss": 0.0031,
|
477 |
+
"step": 7800
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.06,
|
481 |
+
"learning_rate": 3.605247802708175e-05,
|
482 |
+
"loss": 0.0015,
|
483 |
+
"step": 7900
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.08,
|
487 |
+
"learning_rate": 3.5735426306869135e-05,
|
488 |
+
"loss": 0.0103,
|
489 |
+
"step": 8000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.09,
|
493 |
+
"learning_rate": 3.5416243221097553e-05,
|
494 |
+
"loss": 0.0062,
|
495 |
+
"step": 8100
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.1,
|
499 |
+
"learning_rate": 3.509499213900977e-05,
|
500 |
+
"loss": 0.0046,
|
501 |
+
"step": 8200
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.12,
|
505 |
+
"learning_rate": 3.477497910387336e-05,
|
506 |
+
"loss": 0.0082,
|
507 |
+
"step": 8300
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.13,
|
511 |
+
"learning_rate": 3.44498028479363e-05,
|
512 |
+
"loss": 0.0065,
|
513 |
+
"step": 8400
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.14,
|
517 |
+
"learning_rate": 3.412275046861546e-05,
|
518 |
+
"loss": 0.0025,
|
519 |
+
"step": 8500
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.16,
|
523 |
+
"learning_rate": 3.379388689748946e-05,
|
524 |
+
"loss": 0.0047,
|
525 |
+
"step": 8600
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 1.17,
|
529 |
+
"learning_rate": 3.346327742572318e-05,
|
530 |
+
"loss": 0.0028,
|
531 |
+
"step": 8700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 1.18,
|
535 |
+
"learning_rate": 3.3130987691105155e-05,
|
536 |
+
"loss": 0.0037,
|
537 |
+
"step": 8800
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.2,
|
541 |
+
"learning_rate": 3.279708366501608e-05,
|
542 |
+
"loss": 0.0067,
|
543 |
+
"step": 8900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.21,
|
547 |
+
"learning_rate": 3.246163163933119e-05,
|
548 |
+
"loss": 0.0045,
|
549 |
+
"step": 9000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.22,
|
553 |
+
"learning_rate": 3.2124698213258904e-05,
|
554 |
+
"loss": 0.0038,
|
555 |
+
"step": 9100
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.24,
|
559 |
+
"learning_rate": 3.178635028011855e-05,
|
560 |
+
"loss": 0.0103,
|
561 |
+
"step": 9200
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.25,
|
565 |
+
"learning_rate": 3.144665501405963e-05,
|
566 |
+
"loss": 0.0061,
|
567 |
+
"step": 9300
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 1.26,
|
571 |
+
"learning_rate": 3.110567985672535e-05,
|
572 |
+
"loss": 0.0042,
|
573 |
+
"step": 9400
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 1.28,
|
577 |
+
"learning_rate": 3.076349250386302e-05,
|
578 |
+
"loss": 0.0058,
|
579 |
+
"step": 9500
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.29,
|
583 |
+
"learning_rate": 3.0420160891884115e-05,
|
584 |
+
"loss": 0.0077,
|
585 |
+
"step": 9600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.31,
|
589 |
+
"learning_rate": 3.0075753184376354e-05,
|
590 |
+
"loss": 0.0036,
|
591 |
+
"step": 9700
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 1.32,
|
595 |
+
"learning_rate": 2.9730337758570913e-05,
|
596 |
+
"loss": 0.007,
|
597 |
+
"step": 9800
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.33,
|
601 |
+
"learning_rate": 2.938398319176699e-05,
|
602 |
+
"loss": 0.0073,
|
603 |
+
"step": 9900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.35,
|
607 |
+
"learning_rate": 2.903675824771684e-05,
|
608 |
+
"loss": 0.0053,
|
609 |
+
"step": 10000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.36,
|
613 |
+
"learning_rate": 2.8688731862973677e-05,
|
614 |
+
"loss": 0.0074,
|
615 |
+
"step": 10100
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.37,
|
619 |
+
"learning_rate": 2.833997313320535e-05,
|
620 |
+
"loss": 0.004,
|
621 |
+
"step": 10200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.39,
|
625 |
+
"learning_rate": 2.799055129947631e-05,
|
626 |
+
"loss": 0.003,
|
627 |
+
"step": 10300
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.4,
|
631 |
+
"learning_rate": 2.7644038601038813e-05,
|
632 |
+
"loss": 0.0061,
|
633 |
+
"step": 10400
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.41,
|
637 |
+
"learning_rate": 2.7293503693483008e-05,
|
638 |
+
"loss": 0.0044,
|
639 |
+
"step": 10500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.43,
|
643 |
+
"learning_rate": 2.6942513443527008e-05,
|
644 |
+
"loss": 0.0029,
|
645 |
+
"step": 10600
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.44,
|
649 |
+
"learning_rate": 2.6591137535271742e-05,
|
650 |
+
"loss": 0.001,
|
651 |
+
"step": 10700
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 1.45,
|
655 |
+
"learning_rate": 2.6239445729385104e-05,
|
656 |
+
"loss": 0.0047,
|
657 |
+
"step": 10800
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.47,
|
661 |
+
"learning_rate": 2.5887507849251914e-05,
|
662 |
+
"loss": 0.005,
|
663 |
+
"step": 10900
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.48,
|
667 |
+
"learning_rate": 2.5535393767111533e-05,
|
668 |
+
"loss": 0.0023,
|
669 |
+
"step": 11000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.49,
|
673 |
+
"learning_rate": 2.5183173390185736e-05,
|
674 |
+
"loss": 0.003,
|
675 |
+
"step": 11100
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.51,
|
679 |
+
"learning_rate": 2.483091664679959e-05,
|
680 |
+
"loss": 0.0016,
|
681 |
+
"step": 11200
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.52,
|
685 |
+
"learning_rate": 2.44786934724982e-05,
|
686 |
+
"loss": 0.0027,
|
687 |
+
"step": 11300
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.53,
|
691 |
+
"learning_rate": 2.4126573796162015e-05,
|
692 |
+
"loss": 0.003,
|
693 |
+
"step": 11400
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.55,
|
697 |
+
"learning_rate": 2.377462752612344e-05,
|
698 |
+
"loss": 0.002,
|
699 |
+
"step": 11500
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.56,
|
703 |
+
"learning_rate": 2.3422924536287548e-05,
|
704 |
+
"loss": 0.0026,
|
705 |
+
"step": 11600
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.57,
|
709 |
+
"learning_rate": 2.307153465225958e-05,
|
710 |
+
"loss": 0.0037,
|
711 |
+
"step": 11700
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.59,
|
715 |
+
"learning_rate": 2.272052763748209e-05,
|
716 |
+
"loss": 0.0063,
|
717 |
+
"step": 11800
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.6,
|
721 |
+
"learning_rate": 2.2369973179384445e-05,
|
722 |
+
"loss": 0.0046,
|
723 |
+
"step": 11900
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.61,
|
727 |
+
"learning_rate": 2.201994087554733e-05,
|
728 |
+
"loss": 0.0094,
|
729 |
+
"step": 12000
|
730 |
+
}
|
731 |
+
],
|
732 |
+
"logging_steps": 100,
|
733 |
+
"max_steps": 22296,
|
734 |
+
"num_train_epochs": 3,
|
735 |
+
"save_steps": 3000,
|
736 |
+
"total_flos": 1.9310189130989568e+18,
|
737 |
+
"trial_name": null,
|
738 |
+
"trial_params": null
|
739 |
+
}
|
LLM-Detector-V5-11w/checkpoint-12000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a6604f99a4d8b8974d5d75cff26a2d414536f9959193cd5fdb32762398d2f1
|
3 |
+
size 4600
|
LLM-Detector-V5-11w/checkpoint-15000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-14B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V5-11w/checkpoint-15000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-14B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V5-11w/checkpoint-15000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b5e3ade88c7690530234531f5ea3ba1dafb74162f68a6a4c2b8854bf7bb98313
|
3 |
+
size 26243102
|
LLM-Detector-V5-11w/checkpoint-15000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:261495d3911e1b36673858fccc3636350bf81734d6a63cbe6807d07565207f9b
|
3 |
+
size 52496442
|
LLM-Detector-V5-11w/checkpoint-15000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V5-11w/checkpoint-15000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:092fd626805236851c2298469fb04906492bc35a31861f1e7955e1bef1d7670e
|
3 |
+
size 14244
|
LLM-Detector-V5-11w/checkpoint-15000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ea05cc55f2f45f53b449edaad91d7b12c981326c2d9b625bf8e619db7e03be2
|
3 |
+
size 1064
|
LLM-Detector-V5-11w/checkpoint-15000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V5-11w/checkpoint-15000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V5-11w/checkpoint-15000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V5-11w/checkpoint-15000/trainer_state.json
ADDED
@@ -0,0 +1,919 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.018095590461135,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 15000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.9997567688496474e-05,
|
14 |
+
"loss": 2.8699,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.03,
|
19 |
+
"learning_rate": 4.9990172715142793e-05,
|
20 |
+
"loss": 0.0389,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.04,
|
25 |
+
"learning_rate": 4.997781629993153e-05,
|
26 |
+
"loss": 0.0301,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.05,
|
31 |
+
"learning_rate": 4.9960500896052476e-05,
|
32 |
+
"loss": 0.0244,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.07,
|
37 |
+
"learning_rate": 4.993822994123172e-05,
|
38 |
+
"loss": 0.0151,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.08,
|
43 |
+
"learning_rate": 4.9911007857049264e-05,
|
44 |
+
"loss": 0.012,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.09,
|
49 |
+
"learning_rate": 4.987884004806111e-05,
|
50 |
+
"loss": 0.0268,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.11,
|
55 |
+
"learning_rate": 4.984173290072626e-05,
|
56 |
+
"loss": 0.0187,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.12,
|
61 |
+
"learning_rate": 4.979969378213884e-05,
|
62 |
+
"loss": 0.0166,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.13,
|
67 |
+
"learning_rate": 4.975273103856537e-05,
|
68 |
+
"loss": 0.022,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15,
|
73 |
+
"learning_rate": 4.970085399378785e-05,
|
74 |
+
"loss": 0.0194,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.16,
|
79 |
+
"learning_rate": 4.964407294725254e-05,
|
80 |
+
"loss": 0.0182,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.17,
|
85 |
+
"learning_rate": 4.958239917202523e-05,
|
86 |
+
"loss": 0.0204,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.19,
|
91 |
+
"learning_rate": 4.9515844912553106e-05,
|
92 |
+
"loss": 0.013,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.2,
|
97 |
+
"learning_rate": 4.944442338223378e-05,
|
98 |
+
"loss": 0.0107,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.22,
|
103 |
+
"learning_rate": 4.9368148760792e-05,
|
104 |
+
"loss": 0.0156,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.23,
|
109 |
+
"learning_rate": 4.9287036191464414e-05,
|
110 |
+
"loss": 0.0141,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.24,
|
115 |
+
"learning_rate": 4.9201101777993116e-05,
|
116 |
+
"loss": 0.0104,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.26,
|
121 |
+
"learning_rate": 4.911036258142853e-05,
|
122 |
+
"loss": 0.0087,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.27,
|
127 |
+
"learning_rate": 4.9014836616742065e-05,
|
128 |
+
"loss": 0.013,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28,
|
133 |
+
"learning_rate": 4.891454284924965e-05,
|
134 |
+
"loss": 0.0194,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.3,
|
139 |
+
"learning_rate": 4.8809501190846284e-05,
|
140 |
+
"loss": 0.0131,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.31,
|
145 |
+
"learning_rate": 4.8699732496052965e-05,
|
146 |
+
"loss": 0.0135,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.32,
|
151 |
+
"learning_rate": 4.858525855787619e-05,
|
152 |
+
"loss": 0.0106,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.34,
|
157 |
+
"learning_rate": 4.846610210348137e-05,
|
158 |
+
"loss": 0.0089,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.35,
|
163 |
+
"learning_rate": 4.8342286789680605e-05,
|
164 |
+
"loss": 0.0086,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.36,
|
169 |
+
"learning_rate": 4.8213837198235996e-05,
|
170 |
+
"loss": 0.0035,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.38,
|
175 |
+
"learning_rate": 4.8080778830979276e-05,
|
176 |
+
"loss": 0.0121,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.39,
|
181 |
+
"learning_rate": 4.794313810474878e-05,
|
182 |
+
"loss": 0.0146,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.4,
|
187 |
+
"learning_rate": 4.780094234614479e-05,
|
188 |
+
"loss": 0.0047,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.42,
|
193 |
+
"learning_rate": 4.765421978610418e-05,
|
194 |
+
"loss": 0.0096,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.43,
|
199 |
+
"learning_rate": 4.750299955429562e-05,
|
200 |
+
"loss": 0.0116,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.44,
|
205 |
+
"learning_rate": 4.734731167333625e-05,
|
206 |
+
"loss": 0.0192,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.46,
|
211 |
+
"learning_rate": 4.718718705283113e-05,
|
212 |
+
"loss": 0.0111,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.47,
|
217 |
+
"learning_rate": 4.702265748323661e-05,
|
218 |
+
"loss": 0.0114,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.48,
|
223 |
+
"learning_rate": 4.685375562954876e-05,
|
224 |
+
"loss": 0.0113,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.5,
|
229 |
+
"learning_rate": 4.668051502481818e-05,
|
230 |
+
"loss": 0.0097,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.51,
|
235 |
+
"learning_rate": 4.650297006349257e-05,
|
236 |
+
"loss": 0.0094,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.52,
|
241 |
+
"learning_rate": 4.63211559945881e-05,
|
242 |
+
"loss": 0.0059,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.54,
|
247 |
+
"learning_rate": 4.613699021830524e-05,
|
248 |
+
"loss": 0.0195,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.55,
|
253 |
+
"learning_rate": 4.59467888395669e-05,
|
254 |
+
"loss": 0.0088,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.57,
|
259 |
+
"learning_rate": 4.575242877508777e-05,
|
260 |
+
"loss": 0.0087,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.58,
|
265 |
+
"learning_rate": 4.5553948612282607e-05,
|
266 |
+
"loss": 0.0088,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.59,
|
271 |
+
"learning_rate": 4.5351387756552846e-05,
|
272 |
+
"loss": 0.0122,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.61,
|
277 |
+
"learning_rate": 4.51447864234632e-05,
|
278 |
+
"loss": 0.0081,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.62,
|
283 |
+
"learning_rate": 4.4934185630757484e-05,
|
284 |
+
"loss": 0.0079,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.63,
|
289 |
+
"learning_rate": 4.4719627190215064e-05,
|
290 |
+
"loss": 0.011,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.65,
|
295 |
+
"learning_rate": 4.450115369934976e-05,
|
296 |
+
"loss": 0.0146,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.66,
|
301 |
+
"learning_rate": 4.427880853295274e-05,
|
302 |
+
"loss": 0.0057,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.67,
|
307 |
+
"learning_rate": 4.4052635834481025e-05,
|
308 |
+
"loss": 0.0051,
|
309 |
+
"step": 5000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.69,
|
313 |
+
"learning_rate": 4.3822680507293455e-05,
|
314 |
+
"loss": 0.006,
|
315 |
+
"step": 5100
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.7,
|
319 |
+
"learning_rate": 4.358898820573581e-05,
|
320 |
+
"loss": 0.0127,
|
321 |
+
"step": 5200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.71,
|
325 |
+
"learning_rate": 4.3351605326076724e-05,
|
326 |
+
"loss": 0.0062,
|
327 |
+
"step": 5300
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.73,
|
331 |
+
"learning_rate": 4.3110578997296416e-05,
|
332 |
+
"loss": 0.0157,
|
333 |
+
"step": 5400
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.74,
|
337 |
+
"learning_rate": 4.286595707172986e-05,
|
338 |
+
"loss": 0.0111,
|
339 |
+
"step": 5500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.75,
|
343 |
+
"learning_rate": 4.261778811556646e-05,
|
344 |
+
"loss": 0.0141,
|
345 |
+
"step": 5600
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.77,
|
349 |
+
"learning_rate": 4.236612139920786e-05,
|
350 |
+
"loss": 0.0093,
|
351 |
+
"step": 5700
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.78,
|
355 |
+
"learning_rate": 4.2111006887486035e-05,
|
356 |
+
"loss": 0.0091,
|
357 |
+
"step": 5800
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.79,
|
361 |
+
"learning_rate": 4.185249522974346e-05,
|
362 |
+
"loss": 0.0043,
|
363 |
+
"step": 5900
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.81,
|
367 |
+
"learning_rate": 4.159063774977748e-05,
|
368 |
+
"loss": 0.0072,
|
369 |
+
"step": 6000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.82,
|
373 |
+
"learning_rate": 4.1325486435650625e-05,
|
374 |
+
"loss": 0.0063,
|
375 |
+
"step": 6100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.83,
|
379 |
+
"learning_rate": 4.105709392936914e-05,
|
380 |
+
"loss": 0.005,
|
381 |
+
"step": 6200
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.85,
|
385 |
+
"learning_rate": 4.0785513516431705e-05,
|
386 |
+
"loss": 0.0167,
|
387 |
+
"step": 6300
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.86,
|
391 |
+
"learning_rate": 4.051079911525031e-05,
|
392 |
+
"loss": 0.0068,
|
393 |
+
"step": 6400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.87,
|
397 |
+
"learning_rate": 4.023300526644557e-05,
|
398 |
+
"loss": 0.0076,
|
399 |
+
"step": 6500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.89,
|
403 |
+
"learning_rate": 3.9952187122018435e-05,
|
404 |
+
"loss": 0.0123,
|
405 |
+
"step": 6600
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.9,
|
409 |
+
"learning_rate": 3.966840043440054e-05,
|
410 |
+
"loss": 0.0074,
|
411 |
+
"step": 6700
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.91,
|
415 |
+
"learning_rate": 3.9381701545385384e-05,
|
416 |
+
"loss": 0.0045,
|
417 |
+
"step": 6800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.93,
|
421 |
+
"learning_rate": 3.9092147374942454e-05,
|
422 |
+
"loss": 0.0141,
|
423 |
+
"step": 6900
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.94,
|
427 |
+
"learning_rate": 3.87997954099166e-05,
|
428 |
+
"loss": 0.0036,
|
429 |
+
"step": 7000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.96,
|
433 |
+
"learning_rate": 3.8504703692614795e-05,
|
434 |
+
"loss": 0.0077,
|
435 |
+
"step": 7100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.97,
|
439 |
+
"learning_rate": 3.820693080928271e-05,
|
440 |
+
"loss": 0.0063,
|
441 |
+
"step": 7200
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.98,
|
445 |
+
"learning_rate": 3.790653587847325e-05,
|
446 |
+
"loss": 0.0078,
|
447 |
+
"step": 7300
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.0,
|
451 |
+
"learning_rate": 3.760357853930936e-05,
|
452 |
+
"loss": 0.004,
|
453 |
+
"step": 7400
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 1.01,
|
457 |
+
"learning_rate": 3.72981189396436e-05,
|
458 |
+
"loss": 0.003,
|
459 |
+
"step": 7500
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.02,
|
463 |
+
"learning_rate": 3.699021772411661e-05,
|
464 |
+
"loss": 0.0064,
|
465 |
+
"step": 7600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.04,
|
469 |
+
"learning_rate": 3.667993602211695e-05,
|
470 |
+
"loss": 0.0047,
|
471 |
+
"step": 7700
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.05,
|
475 |
+
"learning_rate": 3.636733543564481e-05,
|
476 |
+
"loss": 0.0031,
|
477 |
+
"step": 7800
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.06,
|
481 |
+
"learning_rate": 3.605247802708175e-05,
|
482 |
+
"loss": 0.0015,
|
483 |
+
"step": 7900
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.08,
|
487 |
+
"learning_rate": 3.5735426306869135e-05,
|
488 |
+
"loss": 0.0103,
|
489 |
+
"step": 8000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.09,
|
493 |
+
"learning_rate": 3.5416243221097553e-05,
|
494 |
+
"loss": 0.0062,
|
495 |
+
"step": 8100
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.1,
|
499 |
+
"learning_rate": 3.509499213900977e-05,
|
500 |
+
"loss": 0.0046,
|
501 |
+
"step": 8200
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.12,
|
505 |
+
"learning_rate": 3.477497910387336e-05,
|
506 |
+
"loss": 0.0082,
|
507 |
+
"step": 8300
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.13,
|
511 |
+
"learning_rate": 3.44498028479363e-05,
|
512 |
+
"loss": 0.0065,
|
513 |
+
"step": 8400
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.14,
|
517 |
+
"learning_rate": 3.412275046861546e-05,
|
518 |
+
"loss": 0.0025,
|
519 |
+
"step": 8500
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.16,
|
523 |
+
"learning_rate": 3.379388689748946e-05,
|
524 |
+
"loss": 0.0047,
|
525 |
+
"step": 8600
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 1.17,
|
529 |
+
"learning_rate": 3.346327742572318e-05,
|
530 |
+
"loss": 0.0028,
|
531 |
+
"step": 8700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 1.18,
|
535 |
+
"learning_rate": 3.3130987691105155e-05,
|
536 |
+
"loss": 0.0037,
|
537 |
+
"step": 8800
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.2,
|
541 |
+
"learning_rate": 3.279708366501608e-05,
|
542 |
+
"loss": 0.0067,
|
543 |
+
"step": 8900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.21,
|
547 |
+
"learning_rate": 3.246163163933119e-05,
|
548 |
+
"loss": 0.0045,
|
549 |
+
"step": 9000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.22,
|
553 |
+
"learning_rate": 3.2124698213258904e-05,
|
554 |
+
"loss": 0.0038,
|
555 |
+
"step": 9100
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.24,
|
559 |
+
"learning_rate": 3.178635028011855e-05,
|
560 |
+
"loss": 0.0103,
|
561 |
+
"step": 9200
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.25,
|
565 |
+
"learning_rate": 3.144665501405963e-05,
|
566 |
+
"loss": 0.0061,
|
567 |
+
"step": 9300
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 1.26,
|
571 |
+
"learning_rate": 3.110567985672535e-05,
|
572 |
+
"loss": 0.0042,
|
573 |
+
"step": 9400
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 1.28,
|
577 |
+
"learning_rate": 3.076349250386302e-05,
|
578 |
+
"loss": 0.0058,
|
579 |
+
"step": 9500
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.29,
|
583 |
+
"learning_rate": 3.0420160891884115e-05,
|
584 |
+
"loss": 0.0077,
|
585 |
+
"step": 9600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.31,
|
589 |
+
"learning_rate": 3.0075753184376354e-05,
|
590 |
+
"loss": 0.0036,
|
591 |
+
"step": 9700
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 1.32,
|
595 |
+
"learning_rate": 2.9730337758570913e-05,
|
596 |
+
"loss": 0.007,
|
597 |
+
"step": 9800
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.33,
|
601 |
+
"learning_rate": 2.938398319176699e-05,
|
602 |
+
"loss": 0.0073,
|
603 |
+
"step": 9900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.35,
|
607 |
+
"learning_rate": 2.903675824771684e-05,
|
608 |
+
"loss": 0.0053,
|
609 |
+
"step": 10000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.36,
|
613 |
+
"learning_rate": 2.8688731862973677e-05,
|
614 |
+
"loss": 0.0074,
|
615 |
+
"step": 10100
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.37,
|
619 |
+
"learning_rate": 2.833997313320535e-05,
|
620 |
+
"loss": 0.004,
|
621 |
+
"step": 10200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.39,
|
625 |
+
"learning_rate": 2.799055129947631e-05,
|
626 |
+
"loss": 0.003,
|
627 |
+
"step": 10300
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.4,
|
631 |
+
"learning_rate": 2.7644038601038813e-05,
|
632 |
+
"loss": 0.0061,
|
633 |
+
"step": 10400
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.41,
|
637 |
+
"learning_rate": 2.7293503693483008e-05,
|
638 |
+
"loss": 0.0044,
|
639 |
+
"step": 10500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.43,
|
643 |
+
"learning_rate": 2.6942513443527008e-05,
|
644 |
+
"loss": 0.0029,
|
645 |
+
"step": 10600
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.44,
|
649 |
+
"learning_rate": 2.6591137535271742e-05,
|
650 |
+
"loss": 0.001,
|
651 |
+
"step": 10700
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 1.45,
|
655 |
+
"learning_rate": 2.6239445729385104e-05,
|
656 |
+
"loss": 0.0047,
|
657 |
+
"step": 10800
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.47,
|
661 |
+
"learning_rate": 2.5887507849251914e-05,
|
662 |
+
"loss": 0.005,
|
663 |
+
"step": 10900
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.48,
|
667 |
+
"learning_rate": 2.5535393767111533e-05,
|
668 |
+
"loss": 0.0023,
|
669 |
+
"step": 11000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.49,
|
673 |
+
"learning_rate": 2.5183173390185736e-05,
|
674 |
+
"loss": 0.003,
|
675 |
+
"step": 11100
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.51,
|
679 |
+
"learning_rate": 2.483091664679959e-05,
|
680 |
+
"loss": 0.0016,
|
681 |
+
"step": 11200
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.52,
|
685 |
+
"learning_rate": 2.44786934724982e-05,
|
686 |
+
"loss": 0.0027,
|
687 |
+
"step": 11300
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.53,
|
691 |
+
"learning_rate": 2.4126573796162015e-05,
|
692 |
+
"loss": 0.003,
|
693 |
+
"step": 11400
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.55,
|
697 |
+
"learning_rate": 2.377462752612344e-05,
|
698 |
+
"loss": 0.002,
|
699 |
+
"step": 11500
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.56,
|
703 |
+
"learning_rate": 2.3422924536287548e-05,
|
704 |
+
"loss": 0.0026,
|
705 |
+
"step": 11600
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.57,
|
709 |
+
"learning_rate": 2.307153465225958e-05,
|
710 |
+
"loss": 0.0037,
|
711 |
+
"step": 11700
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.59,
|
715 |
+
"learning_rate": 2.272052763748209e-05,
|
716 |
+
"loss": 0.0063,
|
717 |
+
"step": 11800
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.6,
|
721 |
+
"learning_rate": 2.2369973179384445e-05,
|
722 |
+
"loss": 0.0046,
|
723 |
+
"step": 11900
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.61,
|
727 |
+
"learning_rate": 2.201994087554733e-05,
|
728 |
+
"loss": 0.0094,
|
729 |
+
"step": 12000
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.63,
|
733 |
+
"learning_rate": 2.167050021988514e-05,
|
734 |
+
"loss": 0.0043,
|
735 |
+
"step": 12100
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.64,
|
739 |
+
"learning_rate": 2.1321720588848995e-05,
|
740 |
+
"loss": 0.0024,
|
741 |
+
"step": 12200
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 1.65,
|
745 |
+
"learning_rate": 2.097367122765301e-05,
|
746 |
+
"loss": 0.0029,
|
747 |
+
"step": 12300
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 1.67,
|
751 |
+
"learning_rate": 2.0626421236526656e-05,
|
752 |
+
"loss": 0.0036,
|
753 |
+
"step": 12400
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 1.68,
|
757 |
+
"learning_rate": 2.0280039556995902e-05,
|
758 |
+
"loss": 0.0045,
|
759 |
+
"step": 12500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.7,
|
763 |
+
"learning_rate": 1.9934594958195834e-05,
|
764 |
+
"loss": 0.002,
|
765 |
+
"step": 12600
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.71,
|
769 |
+
"learning_rate": 1.9590156023217553e-05,
|
770 |
+
"loss": 0.0039,
|
771 |
+
"step": 12700
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 1.72,
|
775 |
+
"learning_rate": 1.9246791135491982e-05,
|
776 |
+
"loss": 0.0038,
|
777 |
+
"step": 12800
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.74,
|
781 |
+
"learning_rate": 1.8904568465213288e-05,
|
782 |
+
"loss": 0.0015,
|
783 |
+
"step": 12900
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 1.75,
|
787 |
+
"learning_rate": 1.8563555955804683e-05,
|
788 |
+
"loss": 0.0034,
|
789 |
+
"step": 13000
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.76,
|
793 |
+
"learning_rate": 1.8227212109768717e-05,
|
794 |
+
"loss": 0.0047,
|
795 |
+
"step": 13100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 1.78,
|
799 |
+
"learning_rate": 1.7888808991743948e-05,
|
800 |
+
"loss": 0.002,
|
801 |
+
"step": 13200
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 1.79,
|
805 |
+
"learning_rate": 1.7551817699124613e-05,
|
806 |
+
"loss": 0.0036,
|
807 |
+
"step": 13300
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.8,
|
811 |
+
"learning_rate": 1.721630513671862e-05,
|
812 |
+
"loss": 0.0055,
|
813 |
+
"step": 13400
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 1.82,
|
817 |
+
"learning_rate": 1.6882337915753093e-05,
|
818 |
+
"loss": 0.0054,
|
819 |
+
"step": 13500
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.83,
|
823 |
+
"learning_rate": 1.65499823406497e-05,
|
824 |
+
"loss": 0.0024,
|
825 |
+
"step": 13600
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 1.84,
|
829 |
+
"learning_rate": 1.621930439586083e-05,
|
830 |
+
"loss": 0.0057,
|
831 |
+
"step": 13700
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.86,
|
835 |
+
"learning_rate": 1.5890369732769356e-05,
|
836 |
+
"loss": 0.0055,
|
837 |
+
"step": 13800
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 1.87,
|
841 |
+
"learning_rate": 1.5563243656654454e-05,
|
842 |
+
"loss": 0.0025,
|
843 |
+
"step": 13900
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 1.88,
|
847 |
+
"learning_rate": 1.5237991113726185e-05,
|
848 |
+
"loss": 0.0024,
|
849 |
+
"step": 14000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.9,
|
853 |
+
"learning_rate": 1.4914676678231354e-05,
|
854 |
+
"loss": 0.0037,
|
855 |
+
"step": 14100
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.91,
|
859 |
+
"learning_rate": 1.4593364539633242e-05,
|
860 |
+
"loss": 0.0056,
|
861 |
+
"step": 14200
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 1.92,
|
865 |
+
"learning_rate": 1.4274118489867638e-05,
|
866 |
+
"loss": 0.0017,
|
867 |
+
"step": 14300
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 1.94,
|
871 |
+
"learning_rate": 1.3957001910677942e-05,
|
872 |
+
"loss": 0.0061,
|
873 |
+
"step": 14400
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.95,
|
877 |
+
"learning_rate": 1.3642077761031574e-05,
|
878 |
+
"loss": 0.0011,
|
879 |
+
"step": 14500
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.96,
|
883 |
+
"learning_rate": 1.3329408564620358e-05,
|
884 |
+
"loss": 0.0063,
|
885 |
+
"step": 14600
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 1.98,
|
889 |
+
"learning_rate": 1.3019056397447415e-05,
|
890 |
+
"loss": 0.0005,
|
891 |
+
"step": 14700
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.99,
|
895 |
+
"learning_rate": 1.2711082875502745e-05,
|
896 |
+
"loss": 0.0065,
|
897 |
+
"step": 14800
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 2.0,
|
901 |
+
"learning_rate": 1.2405549142530348e-05,
|
902 |
+
"loss": 0.0019,
|
903 |
+
"step": 14900
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 2.02,
|
907 |
+
"learning_rate": 1.2102515857888976e-05,
|
908 |
+
"loss": 0.0007,
|
909 |
+
"step": 15000
|
910 |
+
}
|
911 |
+
],
|
912 |
+
"logging_steps": 100,
|
913 |
+
"max_steps": 22296,
|
914 |
+
"num_train_epochs": 3,
|
915 |
+
"save_steps": 3000,
|
916 |
+
"total_flos": 2.415914809978061e+18,
|
917 |
+
"trial_name": null,
|
918 |
+
"trial_params": null
|
919 |
+
}
|
LLM-Detector-V5-11w/checkpoint-15000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a6604f99a4d8b8974d5d75cff26a2d414536f9959193cd5fdb32762398d2f1
|
3 |
+
size 4600
|
LLM-Detector-V5-11w/checkpoint-18000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-14B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V5-11w/checkpoint-18000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-14B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V5-11w/checkpoint-18000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9b84f040810abec4b1d058fa65d87d3914a6644ff60a8b71cd9cb57516ac29e4
|
3 |
+
size 26243102
|
LLM-Detector-V5-11w/checkpoint-18000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:599ef45aa70ef147baf3eed450e8ea1c1b79d43b09246edbf2d46c8dddf631a6
|
3 |
+
size 52496442
|
LLM-Detector-V5-11w/checkpoint-18000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V5-11w/checkpoint-18000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cffef474a61b5d594d02a14df6e47f6516d65561a1e6dc4f046d212671d47185
|
3 |
+
size 14244
|
LLM-Detector-V5-11w/checkpoint-18000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ceeb9aa46e20b83a8a047535f01f9c43262f16f9d910408401c88cb64c2085
|
3 |
+
size 1064
|
LLM-Detector-V5-11w/checkpoint-18000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V5-11w/checkpoint-18000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V5-11w/checkpoint-18000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|
LLM-Detector-V5-11w/checkpoint-18000/trainer_state.json
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.421714708553362,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 18000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 4.9997567688496474e-05,
|
14 |
+
"loss": 2.8699,
|
15 |
+
"step": 100
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.03,
|
19 |
+
"learning_rate": 4.9990172715142793e-05,
|
20 |
+
"loss": 0.0389,
|
21 |
+
"step": 200
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.04,
|
25 |
+
"learning_rate": 4.997781629993153e-05,
|
26 |
+
"loss": 0.0301,
|
27 |
+
"step": 300
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.05,
|
31 |
+
"learning_rate": 4.9960500896052476e-05,
|
32 |
+
"loss": 0.0244,
|
33 |
+
"step": 400
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.07,
|
37 |
+
"learning_rate": 4.993822994123172e-05,
|
38 |
+
"loss": 0.0151,
|
39 |
+
"step": 500
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.08,
|
43 |
+
"learning_rate": 4.9911007857049264e-05,
|
44 |
+
"loss": 0.012,
|
45 |
+
"step": 600
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.09,
|
49 |
+
"learning_rate": 4.987884004806111e-05,
|
50 |
+
"loss": 0.0268,
|
51 |
+
"step": 700
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.11,
|
55 |
+
"learning_rate": 4.984173290072626e-05,
|
56 |
+
"loss": 0.0187,
|
57 |
+
"step": 800
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.12,
|
61 |
+
"learning_rate": 4.979969378213884e-05,
|
62 |
+
"loss": 0.0166,
|
63 |
+
"step": 900
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.13,
|
67 |
+
"learning_rate": 4.975273103856537e-05,
|
68 |
+
"loss": 0.022,
|
69 |
+
"step": 1000
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.15,
|
73 |
+
"learning_rate": 4.970085399378785e-05,
|
74 |
+
"loss": 0.0194,
|
75 |
+
"step": 1100
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"epoch": 0.16,
|
79 |
+
"learning_rate": 4.964407294725254e-05,
|
80 |
+
"loss": 0.0182,
|
81 |
+
"step": 1200
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.17,
|
85 |
+
"learning_rate": 4.958239917202523e-05,
|
86 |
+
"loss": 0.0204,
|
87 |
+
"step": 1300
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.19,
|
91 |
+
"learning_rate": 4.9515844912553106e-05,
|
92 |
+
"loss": 0.013,
|
93 |
+
"step": 1400
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.2,
|
97 |
+
"learning_rate": 4.944442338223378e-05,
|
98 |
+
"loss": 0.0107,
|
99 |
+
"step": 1500
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.22,
|
103 |
+
"learning_rate": 4.9368148760792e-05,
|
104 |
+
"loss": 0.0156,
|
105 |
+
"step": 1600
|
106 |
+
},
|
107 |
+
{
|
108 |
+
"epoch": 0.23,
|
109 |
+
"learning_rate": 4.9287036191464414e-05,
|
110 |
+
"loss": 0.0141,
|
111 |
+
"step": 1700
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"epoch": 0.24,
|
115 |
+
"learning_rate": 4.9201101777993116e-05,
|
116 |
+
"loss": 0.0104,
|
117 |
+
"step": 1800
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.26,
|
121 |
+
"learning_rate": 4.911036258142853e-05,
|
122 |
+
"loss": 0.0087,
|
123 |
+
"step": 1900
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.27,
|
127 |
+
"learning_rate": 4.9014836616742065e-05,
|
128 |
+
"loss": 0.013,
|
129 |
+
"step": 2000
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.28,
|
133 |
+
"learning_rate": 4.891454284924965e-05,
|
134 |
+
"loss": 0.0194,
|
135 |
+
"step": 2100
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.3,
|
139 |
+
"learning_rate": 4.8809501190846284e-05,
|
140 |
+
"loss": 0.0131,
|
141 |
+
"step": 2200
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.31,
|
145 |
+
"learning_rate": 4.8699732496052965e-05,
|
146 |
+
"loss": 0.0135,
|
147 |
+
"step": 2300
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 0.32,
|
151 |
+
"learning_rate": 4.858525855787619e-05,
|
152 |
+
"loss": 0.0106,
|
153 |
+
"step": 2400
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.34,
|
157 |
+
"learning_rate": 4.846610210348137e-05,
|
158 |
+
"loss": 0.0089,
|
159 |
+
"step": 2500
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"epoch": 0.35,
|
163 |
+
"learning_rate": 4.8342286789680605e-05,
|
164 |
+
"loss": 0.0086,
|
165 |
+
"step": 2600
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.36,
|
169 |
+
"learning_rate": 4.8213837198235996e-05,
|
170 |
+
"loss": 0.0035,
|
171 |
+
"step": 2700
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.38,
|
175 |
+
"learning_rate": 4.8080778830979276e-05,
|
176 |
+
"loss": 0.0121,
|
177 |
+
"step": 2800
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.39,
|
181 |
+
"learning_rate": 4.794313810474878e-05,
|
182 |
+
"loss": 0.0146,
|
183 |
+
"step": 2900
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 0.4,
|
187 |
+
"learning_rate": 4.780094234614479e-05,
|
188 |
+
"loss": 0.0047,
|
189 |
+
"step": 3000
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.42,
|
193 |
+
"learning_rate": 4.765421978610418e-05,
|
194 |
+
"loss": 0.0096,
|
195 |
+
"step": 3100
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"epoch": 0.43,
|
199 |
+
"learning_rate": 4.750299955429562e-05,
|
200 |
+
"loss": 0.0116,
|
201 |
+
"step": 3200
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.44,
|
205 |
+
"learning_rate": 4.734731167333625e-05,
|
206 |
+
"loss": 0.0192,
|
207 |
+
"step": 3300
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.46,
|
211 |
+
"learning_rate": 4.718718705283113e-05,
|
212 |
+
"loss": 0.0111,
|
213 |
+
"step": 3400
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.47,
|
217 |
+
"learning_rate": 4.702265748323661e-05,
|
218 |
+
"loss": 0.0114,
|
219 |
+
"step": 3500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.48,
|
223 |
+
"learning_rate": 4.685375562954876e-05,
|
224 |
+
"loss": 0.0113,
|
225 |
+
"step": 3600
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.5,
|
229 |
+
"learning_rate": 4.668051502481818e-05,
|
230 |
+
"loss": 0.0097,
|
231 |
+
"step": 3700
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.51,
|
235 |
+
"learning_rate": 4.650297006349257e-05,
|
236 |
+
"loss": 0.0094,
|
237 |
+
"step": 3800
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.52,
|
241 |
+
"learning_rate": 4.63211559945881e-05,
|
242 |
+
"loss": 0.0059,
|
243 |
+
"step": 3900
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.54,
|
247 |
+
"learning_rate": 4.613699021830524e-05,
|
248 |
+
"loss": 0.0195,
|
249 |
+
"step": 4000
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.55,
|
253 |
+
"learning_rate": 4.59467888395669e-05,
|
254 |
+
"loss": 0.0088,
|
255 |
+
"step": 4100
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.57,
|
259 |
+
"learning_rate": 4.575242877508777e-05,
|
260 |
+
"loss": 0.0087,
|
261 |
+
"step": 4200
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.58,
|
265 |
+
"learning_rate": 4.5553948612282607e-05,
|
266 |
+
"loss": 0.0088,
|
267 |
+
"step": 4300
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.59,
|
271 |
+
"learning_rate": 4.5351387756552846e-05,
|
272 |
+
"loss": 0.0122,
|
273 |
+
"step": 4400
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.61,
|
277 |
+
"learning_rate": 4.51447864234632e-05,
|
278 |
+
"loss": 0.0081,
|
279 |
+
"step": 4500
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.62,
|
283 |
+
"learning_rate": 4.4934185630757484e-05,
|
284 |
+
"loss": 0.0079,
|
285 |
+
"step": 4600
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.63,
|
289 |
+
"learning_rate": 4.4719627190215064e-05,
|
290 |
+
"loss": 0.011,
|
291 |
+
"step": 4700
|
292 |
+
},
|
293 |
+
{
|
294 |
+
"epoch": 0.65,
|
295 |
+
"learning_rate": 4.450115369934976e-05,
|
296 |
+
"loss": 0.0146,
|
297 |
+
"step": 4800
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.66,
|
301 |
+
"learning_rate": 4.427880853295274e-05,
|
302 |
+
"loss": 0.0057,
|
303 |
+
"step": 4900
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.67,
|
307 |
+
"learning_rate": 4.4052635834481025e-05,
|
308 |
+
"loss": 0.0051,
|
309 |
+
"step": 5000
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"epoch": 0.69,
|
313 |
+
"learning_rate": 4.3822680507293455e-05,
|
314 |
+
"loss": 0.006,
|
315 |
+
"step": 5100
|
316 |
+
},
|
317 |
+
{
|
318 |
+
"epoch": 0.7,
|
319 |
+
"learning_rate": 4.358898820573581e-05,
|
320 |
+
"loss": 0.0127,
|
321 |
+
"step": 5200
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.71,
|
325 |
+
"learning_rate": 4.3351605326076724e-05,
|
326 |
+
"loss": 0.0062,
|
327 |
+
"step": 5300
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.73,
|
331 |
+
"learning_rate": 4.3110578997296416e-05,
|
332 |
+
"loss": 0.0157,
|
333 |
+
"step": 5400
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"epoch": 0.74,
|
337 |
+
"learning_rate": 4.286595707172986e-05,
|
338 |
+
"loss": 0.0111,
|
339 |
+
"step": 5500
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 0.75,
|
343 |
+
"learning_rate": 4.261778811556646e-05,
|
344 |
+
"loss": 0.0141,
|
345 |
+
"step": 5600
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.77,
|
349 |
+
"learning_rate": 4.236612139920786e-05,
|
350 |
+
"loss": 0.0093,
|
351 |
+
"step": 5700
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"epoch": 0.78,
|
355 |
+
"learning_rate": 4.2111006887486035e-05,
|
356 |
+
"loss": 0.0091,
|
357 |
+
"step": 5800
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 0.79,
|
361 |
+
"learning_rate": 4.185249522974346e-05,
|
362 |
+
"loss": 0.0043,
|
363 |
+
"step": 5900
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.81,
|
367 |
+
"learning_rate": 4.159063774977748e-05,
|
368 |
+
"loss": 0.0072,
|
369 |
+
"step": 6000
|
370 |
+
},
|
371 |
+
{
|
372 |
+
"epoch": 0.82,
|
373 |
+
"learning_rate": 4.1325486435650625e-05,
|
374 |
+
"loss": 0.0063,
|
375 |
+
"step": 6100
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"epoch": 0.83,
|
379 |
+
"learning_rate": 4.105709392936914e-05,
|
380 |
+
"loss": 0.005,
|
381 |
+
"step": 6200
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 0.85,
|
385 |
+
"learning_rate": 4.0785513516431705e-05,
|
386 |
+
"loss": 0.0167,
|
387 |
+
"step": 6300
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.86,
|
391 |
+
"learning_rate": 4.051079911525031e-05,
|
392 |
+
"loss": 0.0068,
|
393 |
+
"step": 6400
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"epoch": 0.87,
|
397 |
+
"learning_rate": 4.023300526644557e-05,
|
398 |
+
"loss": 0.0076,
|
399 |
+
"step": 6500
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 0.89,
|
403 |
+
"learning_rate": 3.9952187122018435e-05,
|
404 |
+
"loss": 0.0123,
|
405 |
+
"step": 6600
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.9,
|
409 |
+
"learning_rate": 3.966840043440054e-05,
|
410 |
+
"loss": 0.0074,
|
411 |
+
"step": 6700
|
412 |
+
},
|
413 |
+
{
|
414 |
+
"epoch": 0.91,
|
415 |
+
"learning_rate": 3.9381701545385384e-05,
|
416 |
+
"loss": 0.0045,
|
417 |
+
"step": 6800
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.93,
|
421 |
+
"learning_rate": 3.9092147374942454e-05,
|
422 |
+
"loss": 0.0141,
|
423 |
+
"step": 6900
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.94,
|
427 |
+
"learning_rate": 3.87997954099166e-05,
|
428 |
+
"loss": 0.0036,
|
429 |
+
"step": 7000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.96,
|
433 |
+
"learning_rate": 3.8504703692614795e-05,
|
434 |
+
"loss": 0.0077,
|
435 |
+
"step": 7100
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.97,
|
439 |
+
"learning_rate": 3.820693080928271e-05,
|
440 |
+
"loss": 0.0063,
|
441 |
+
"step": 7200
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.98,
|
445 |
+
"learning_rate": 3.790653587847325e-05,
|
446 |
+
"loss": 0.0078,
|
447 |
+
"step": 7300
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 1.0,
|
451 |
+
"learning_rate": 3.760357853930936e-05,
|
452 |
+
"loss": 0.004,
|
453 |
+
"step": 7400
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 1.01,
|
457 |
+
"learning_rate": 3.72981189396436e-05,
|
458 |
+
"loss": 0.003,
|
459 |
+
"step": 7500
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 1.02,
|
463 |
+
"learning_rate": 3.699021772411661e-05,
|
464 |
+
"loss": 0.0064,
|
465 |
+
"step": 7600
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 1.04,
|
469 |
+
"learning_rate": 3.667993602211695e-05,
|
470 |
+
"loss": 0.0047,
|
471 |
+
"step": 7700
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 1.05,
|
475 |
+
"learning_rate": 3.636733543564481e-05,
|
476 |
+
"loss": 0.0031,
|
477 |
+
"step": 7800
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.06,
|
481 |
+
"learning_rate": 3.605247802708175e-05,
|
482 |
+
"loss": 0.0015,
|
483 |
+
"step": 7900
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.08,
|
487 |
+
"learning_rate": 3.5735426306869135e-05,
|
488 |
+
"loss": 0.0103,
|
489 |
+
"step": 8000
|
490 |
+
},
|
491 |
+
{
|
492 |
+
"epoch": 1.09,
|
493 |
+
"learning_rate": 3.5416243221097553e-05,
|
494 |
+
"loss": 0.0062,
|
495 |
+
"step": 8100
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"epoch": 1.1,
|
499 |
+
"learning_rate": 3.509499213900977e-05,
|
500 |
+
"loss": 0.0046,
|
501 |
+
"step": 8200
|
502 |
+
},
|
503 |
+
{
|
504 |
+
"epoch": 1.12,
|
505 |
+
"learning_rate": 3.477497910387336e-05,
|
506 |
+
"loss": 0.0082,
|
507 |
+
"step": 8300
|
508 |
+
},
|
509 |
+
{
|
510 |
+
"epoch": 1.13,
|
511 |
+
"learning_rate": 3.44498028479363e-05,
|
512 |
+
"loss": 0.0065,
|
513 |
+
"step": 8400
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 1.14,
|
517 |
+
"learning_rate": 3.412275046861546e-05,
|
518 |
+
"loss": 0.0025,
|
519 |
+
"step": 8500
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.16,
|
523 |
+
"learning_rate": 3.379388689748946e-05,
|
524 |
+
"loss": 0.0047,
|
525 |
+
"step": 8600
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 1.17,
|
529 |
+
"learning_rate": 3.346327742572318e-05,
|
530 |
+
"loss": 0.0028,
|
531 |
+
"step": 8700
|
532 |
+
},
|
533 |
+
{
|
534 |
+
"epoch": 1.18,
|
535 |
+
"learning_rate": 3.3130987691105155e-05,
|
536 |
+
"loss": 0.0037,
|
537 |
+
"step": 8800
|
538 |
+
},
|
539 |
+
{
|
540 |
+
"epoch": 1.2,
|
541 |
+
"learning_rate": 3.279708366501608e-05,
|
542 |
+
"loss": 0.0067,
|
543 |
+
"step": 8900
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"epoch": 1.21,
|
547 |
+
"learning_rate": 3.246163163933119e-05,
|
548 |
+
"loss": 0.0045,
|
549 |
+
"step": 9000
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"epoch": 1.22,
|
553 |
+
"learning_rate": 3.2124698213258904e-05,
|
554 |
+
"loss": 0.0038,
|
555 |
+
"step": 9100
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.24,
|
559 |
+
"learning_rate": 3.178635028011855e-05,
|
560 |
+
"loss": 0.0103,
|
561 |
+
"step": 9200
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.25,
|
565 |
+
"learning_rate": 3.144665501405963e-05,
|
566 |
+
"loss": 0.0061,
|
567 |
+
"step": 9300
|
568 |
+
},
|
569 |
+
{
|
570 |
+
"epoch": 1.26,
|
571 |
+
"learning_rate": 3.110567985672535e-05,
|
572 |
+
"loss": 0.0042,
|
573 |
+
"step": 9400
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"epoch": 1.28,
|
577 |
+
"learning_rate": 3.076349250386302e-05,
|
578 |
+
"loss": 0.0058,
|
579 |
+
"step": 9500
|
580 |
+
},
|
581 |
+
{
|
582 |
+
"epoch": 1.29,
|
583 |
+
"learning_rate": 3.0420160891884115e-05,
|
584 |
+
"loss": 0.0077,
|
585 |
+
"step": 9600
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"epoch": 1.31,
|
589 |
+
"learning_rate": 3.0075753184376354e-05,
|
590 |
+
"loss": 0.0036,
|
591 |
+
"step": 9700
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 1.32,
|
595 |
+
"learning_rate": 2.9730337758570913e-05,
|
596 |
+
"loss": 0.007,
|
597 |
+
"step": 9800
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.33,
|
601 |
+
"learning_rate": 2.938398319176699e-05,
|
602 |
+
"loss": 0.0073,
|
603 |
+
"step": 9900
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.35,
|
607 |
+
"learning_rate": 2.903675824771684e-05,
|
608 |
+
"loss": 0.0053,
|
609 |
+
"step": 10000
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 1.36,
|
613 |
+
"learning_rate": 2.8688731862973677e-05,
|
614 |
+
"loss": 0.0074,
|
615 |
+
"step": 10100
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 1.37,
|
619 |
+
"learning_rate": 2.833997313320535e-05,
|
620 |
+
"loss": 0.004,
|
621 |
+
"step": 10200
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 1.39,
|
625 |
+
"learning_rate": 2.799055129947631e-05,
|
626 |
+
"loss": 0.003,
|
627 |
+
"step": 10300
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 1.4,
|
631 |
+
"learning_rate": 2.7644038601038813e-05,
|
632 |
+
"loss": 0.0061,
|
633 |
+
"step": 10400
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.41,
|
637 |
+
"learning_rate": 2.7293503693483008e-05,
|
638 |
+
"loss": 0.0044,
|
639 |
+
"step": 10500
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 1.43,
|
643 |
+
"learning_rate": 2.6942513443527008e-05,
|
644 |
+
"loss": 0.0029,
|
645 |
+
"step": 10600
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.44,
|
649 |
+
"learning_rate": 2.6591137535271742e-05,
|
650 |
+
"loss": 0.001,
|
651 |
+
"step": 10700
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 1.45,
|
655 |
+
"learning_rate": 2.6239445729385104e-05,
|
656 |
+
"loss": 0.0047,
|
657 |
+
"step": 10800
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 1.47,
|
661 |
+
"learning_rate": 2.5887507849251914e-05,
|
662 |
+
"loss": 0.005,
|
663 |
+
"step": 10900
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 1.48,
|
667 |
+
"learning_rate": 2.5535393767111533e-05,
|
668 |
+
"loss": 0.0023,
|
669 |
+
"step": 11000
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 1.49,
|
673 |
+
"learning_rate": 2.5183173390185736e-05,
|
674 |
+
"loss": 0.003,
|
675 |
+
"step": 11100
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.51,
|
679 |
+
"learning_rate": 2.483091664679959e-05,
|
680 |
+
"loss": 0.0016,
|
681 |
+
"step": 11200
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.52,
|
685 |
+
"learning_rate": 2.44786934724982e-05,
|
686 |
+
"loss": 0.0027,
|
687 |
+
"step": 11300
|
688 |
+
},
|
689 |
+
{
|
690 |
+
"epoch": 1.53,
|
691 |
+
"learning_rate": 2.4126573796162015e-05,
|
692 |
+
"loss": 0.003,
|
693 |
+
"step": 11400
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"epoch": 1.55,
|
697 |
+
"learning_rate": 2.377462752612344e-05,
|
698 |
+
"loss": 0.002,
|
699 |
+
"step": 11500
|
700 |
+
},
|
701 |
+
{
|
702 |
+
"epoch": 1.56,
|
703 |
+
"learning_rate": 2.3422924536287548e-05,
|
704 |
+
"loss": 0.0026,
|
705 |
+
"step": 11600
|
706 |
+
},
|
707 |
+
{
|
708 |
+
"epoch": 1.57,
|
709 |
+
"learning_rate": 2.307153465225958e-05,
|
710 |
+
"loss": 0.0037,
|
711 |
+
"step": 11700
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 1.59,
|
715 |
+
"learning_rate": 2.272052763748209e-05,
|
716 |
+
"loss": 0.0063,
|
717 |
+
"step": 11800
|
718 |
+
},
|
719 |
+
{
|
720 |
+
"epoch": 1.6,
|
721 |
+
"learning_rate": 2.2369973179384445e-05,
|
722 |
+
"loss": 0.0046,
|
723 |
+
"step": 11900
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.61,
|
727 |
+
"learning_rate": 2.201994087554733e-05,
|
728 |
+
"loss": 0.0094,
|
729 |
+
"step": 12000
|
730 |
+
},
|
731 |
+
{
|
732 |
+
"epoch": 1.63,
|
733 |
+
"learning_rate": 2.167050021988514e-05,
|
734 |
+
"loss": 0.0043,
|
735 |
+
"step": 12100
|
736 |
+
},
|
737 |
+
{
|
738 |
+
"epoch": 1.64,
|
739 |
+
"learning_rate": 2.1321720588848995e-05,
|
740 |
+
"loss": 0.0024,
|
741 |
+
"step": 12200
|
742 |
+
},
|
743 |
+
{
|
744 |
+
"epoch": 1.65,
|
745 |
+
"learning_rate": 2.097367122765301e-05,
|
746 |
+
"loss": 0.0029,
|
747 |
+
"step": 12300
|
748 |
+
},
|
749 |
+
{
|
750 |
+
"epoch": 1.67,
|
751 |
+
"learning_rate": 2.0626421236526656e-05,
|
752 |
+
"loss": 0.0036,
|
753 |
+
"step": 12400
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 1.68,
|
757 |
+
"learning_rate": 2.0280039556995902e-05,
|
758 |
+
"loss": 0.0045,
|
759 |
+
"step": 12500
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.7,
|
763 |
+
"learning_rate": 1.9934594958195834e-05,
|
764 |
+
"loss": 0.002,
|
765 |
+
"step": 12600
|
766 |
+
},
|
767 |
+
{
|
768 |
+
"epoch": 1.71,
|
769 |
+
"learning_rate": 1.9590156023217553e-05,
|
770 |
+
"loss": 0.0039,
|
771 |
+
"step": 12700
|
772 |
+
},
|
773 |
+
{
|
774 |
+
"epoch": 1.72,
|
775 |
+
"learning_rate": 1.9246791135491982e-05,
|
776 |
+
"loss": 0.0038,
|
777 |
+
"step": 12800
|
778 |
+
},
|
779 |
+
{
|
780 |
+
"epoch": 1.74,
|
781 |
+
"learning_rate": 1.8904568465213288e-05,
|
782 |
+
"loss": 0.0015,
|
783 |
+
"step": 12900
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"epoch": 1.75,
|
787 |
+
"learning_rate": 1.8563555955804683e-05,
|
788 |
+
"loss": 0.0034,
|
789 |
+
"step": 13000
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 1.76,
|
793 |
+
"learning_rate": 1.8227212109768717e-05,
|
794 |
+
"loss": 0.0047,
|
795 |
+
"step": 13100
|
796 |
+
},
|
797 |
+
{
|
798 |
+
"epoch": 1.78,
|
799 |
+
"learning_rate": 1.7888808991743948e-05,
|
800 |
+
"loss": 0.002,
|
801 |
+
"step": 13200
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 1.79,
|
805 |
+
"learning_rate": 1.7551817699124613e-05,
|
806 |
+
"loss": 0.0036,
|
807 |
+
"step": 13300
|
808 |
+
},
|
809 |
+
{
|
810 |
+
"epoch": 1.8,
|
811 |
+
"learning_rate": 1.721630513671862e-05,
|
812 |
+
"loss": 0.0055,
|
813 |
+
"step": 13400
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"epoch": 1.82,
|
817 |
+
"learning_rate": 1.6882337915753093e-05,
|
818 |
+
"loss": 0.0054,
|
819 |
+
"step": 13500
|
820 |
+
},
|
821 |
+
{
|
822 |
+
"epoch": 1.83,
|
823 |
+
"learning_rate": 1.65499823406497e-05,
|
824 |
+
"loss": 0.0024,
|
825 |
+
"step": 13600
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 1.84,
|
829 |
+
"learning_rate": 1.621930439586083e-05,
|
830 |
+
"loss": 0.0057,
|
831 |
+
"step": 13700
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 1.86,
|
835 |
+
"learning_rate": 1.5890369732769356e-05,
|
836 |
+
"loss": 0.0055,
|
837 |
+
"step": 13800
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 1.87,
|
841 |
+
"learning_rate": 1.5563243656654454e-05,
|
842 |
+
"loss": 0.0025,
|
843 |
+
"step": 13900
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 1.88,
|
847 |
+
"learning_rate": 1.5237991113726185e-05,
|
848 |
+
"loss": 0.0024,
|
849 |
+
"step": 14000
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 1.9,
|
853 |
+
"learning_rate": 1.4914676678231354e-05,
|
854 |
+
"loss": 0.0037,
|
855 |
+
"step": 14100
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 1.91,
|
859 |
+
"learning_rate": 1.4593364539633242e-05,
|
860 |
+
"loss": 0.0056,
|
861 |
+
"step": 14200
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 1.92,
|
865 |
+
"learning_rate": 1.4274118489867638e-05,
|
866 |
+
"loss": 0.0017,
|
867 |
+
"step": 14300
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 1.94,
|
871 |
+
"learning_rate": 1.3957001910677942e-05,
|
872 |
+
"loss": 0.0061,
|
873 |
+
"step": 14400
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 1.95,
|
877 |
+
"learning_rate": 1.3642077761031574e-05,
|
878 |
+
"loss": 0.0011,
|
879 |
+
"step": 14500
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 1.96,
|
883 |
+
"learning_rate": 1.3329408564620358e-05,
|
884 |
+
"loss": 0.0063,
|
885 |
+
"step": 14600
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 1.98,
|
889 |
+
"learning_rate": 1.3019056397447415e-05,
|
890 |
+
"loss": 0.0005,
|
891 |
+
"step": 14700
|
892 |
+
},
|
893 |
+
{
|
894 |
+
"epoch": 1.99,
|
895 |
+
"learning_rate": 1.2711082875502745e-05,
|
896 |
+
"loss": 0.0065,
|
897 |
+
"step": 14800
|
898 |
+
},
|
899 |
+
{
|
900 |
+
"epoch": 2.0,
|
901 |
+
"learning_rate": 1.2405549142530348e-05,
|
902 |
+
"loss": 0.0019,
|
903 |
+
"step": 14900
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"epoch": 2.02,
|
907 |
+
"learning_rate": 1.2102515857888976e-05,
|
908 |
+
"loss": 0.0007,
|
909 |
+
"step": 15000
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 2.03,
|
913 |
+
"learning_rate": 1.1802043184509044e-05,
|
914 |
+
"loss": 0.0008,
|
915 |
+
"step": 15100
|
916 |
+
},
|
917 |
+
{
|
918 |
+
"epoch": 2.05,
|
919 |
+
"learning_rate": 1.1504190776948205e-05,
|
920 |
+
"loss": 0.0018,
|
921 |
+
"step": 15200
|
922 |
+
},
|
923 |
+
{
|
924 |
+
"epoch": 2.06,
|
925 |
+
"learning_rate": 1.1209017769547758e-05,
|
926 |
+
"loss": 0.0002,
|
927 |
+
"step": 15300
|
928 |
+
},
|
929 |
+
{
|
930 |
+
"epoch": 2.07,
|
931 |
+
"learning_rate": 1.0916582764692346e-05,
|
932 |
+
"loss": 0.0009,
|
933 |
+
"step": 15400
|
934 |
+
},
|
935 |
+
{
|
936 |
+
"epoch": 2.09,
|
937 |
+
"learning_rate": 1.062694382117534e-05,
|
938 |
+
"loss": 0.0003,
|
939 |
+
"step": 15500
|
940 |
+
},
|
941 |
+
{
|
942 |
+
"epoch": 2.1,
|
943 |
+
"learning_rate": 1.0340158442672049e-05,
|
944 |
+
"loss": 0.0018,
|
945 |
+
"step": 15600
|
946 |
+
},
|
947 |
+
{
|
948 |
+
"epoch": 2.11,
|
949 |
+
"learning_rate": 1.0056283566323224e-05,
|
950 |
+
"loss": 0.0053,
|
951 |
+
"step": 15700
|
952 |
+
},
|
953 |
+
{
|
954 |
+
"epoch": 2.13,
|
955 |
+
"learning_rate": 9.77537555143098e-06,
|
956 |
+
"loss": 0.0005,
|
957 |
+
"step": 15800
|
958 |
+
},
|
959 |
+
{
|
960 |
+
"epoch": 2.14,
|
961 |
+
"learning_rate": 9.497490168269444e-06,
|
962 |
+
"loss": 0.0009,
|
963 |
+
"step": 15900
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"epoch": 2.15,
|
967 |
+
"learning_rate": 9.222682587012408e-06,
|
968 |
+
"loss": 0.0018,
|
969 |
+
"step": 16000
|
970 |
+
},
|
971 |
+
{
|
972 |
+
"epoch": 2.17,
|
973 |
+
"learning_rate": 8.951007366780059e-06,
|
974 |
+
"loss": 0.0003,
|
975 |
+
"step": 16100
|
976 |
+
},
|
977 |
+
{
|
978 |
+
"epoch": 2.18,
|
979 |
+
"learning_rate": 8.682518444807017e-06,
|
980 |
+
"loss": 0.0003,
|
981 |
+
"step": 16200
|
982 |
+
},
|
983 |
+
{
|
984 |
+
"epoch": 2.19,
|
985 |
+
"learning_rate": 8.417269125733923e-06,
|
986 |
+
"loss": 0.0023,
|
987 |
+
"step": 16300
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 2.21,
|
991 |
+
"learning_rate": 8.155312071024505e-06,
|
992 |
+
"loss": 0.0008,
|
993 |
+
"step": 16400
|
994 |
+
},
|
995 |
+
{
|
996 |
+
"epoch": 2.22,
|
997 |
+
"learning_rate": 7.896699288510437e-06,
|
998 |
+
"loss": 0.0002,
|
999 |
+
"step": 16500
|
1000 |
+
},
|
1001 |
+
{
|
1002 |
+
"epoch": 2.23,
|
1003 |
+
"learning_rate": 7.64148212206594e-06,
|
1004 |
+
"loss": 0.0009,
|
1005 |
+
"step": 16600
|
1006 |
+
},
|
1007 |
+
{
|
1008 |
+
"epoch": 2.25,
|
1009 |
+
"learning_rate": 7.389711241414119e-06,
|
1010 |
+
"loss": 0.0003,
|
1011 |
+
"step": 16700
|
1012 |
+
},
|
1013 |
+
{
|
1014 |
+
"epoch": 2.26,
|
1015 |
+
"learning_rate": 7.141436632067294e-06,
|
1016 |
+
"loss": 0.0001,
|
1017 |
+
"step": 16800
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"epoch": 2.27,
|
1021 |
+
"learning_rate": 6.896707585403029e-06,
|
1022 |
+
"loss": 0.0006,
|
1023 |
+
"step": 16900
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"epoch": 2.29,
|
1027 |
+
"learning_rate": 6.655572688878073e-06,
|
1028 |
+
"loss": 0.0009,
|
1029 |
+
"step": 17000
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 2.3,
|
1033 |
+
"learning_rate": 6.4180798163820085e-06,
|
1034 |
+
"loss": 0.0002,
|
1035 |
+
"step": 17100
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 2.31,
|
1039 |
+
"learning_rate": 6.184276118732538e-06,
|
1040 |
+
"loss": 0.0009,
|
1041 |
+
"step": 17200
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 2.33,
|
1045 |
+
"learning_rate": 5.954208014314419e-06,
|
1046 |
+
"loss": 0.0018,
|
1047 |
+
"step": 17300
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 2.34,
|
1051 |
+
"learning_rate": 5.727921179863712e-06,
|
1052 |
+
"loss": 0.0014,
|
1053 |
+
"step": 17400
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 2.35,
|
1057 |
+
"learning_rate": 5.505460541399343e-06,
|
1058 |
+
"loss": 0.0006,
|
1059 |
+
"step": 17500
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 2.37,
|
1063 |
+
"learning_rate": 5.286870265303676e-06,
|
1064 |
+
"loss": 0.0,
|
1065 |
+
"step": 17600
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 2.38,
|
1069 |
+
"learning_rate": 5.074321001003329e-06,
|
1070 |
+
"loss": 0.0004,
|
1071 |
+
"step": 17700
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 2.39,
|
1075 |
+
"learning_rate": 4.863561094340846e-06,
|
1076 |
+
"loss": 0.0005,
|
1077 |
+
"step": 17800
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 2.41,
|
1081 |
+
"learning_rate": 4.656798990014011e-06,
|
1082 |
+
"loss": 0.0026,
|
1083 |
+
"step": 17900
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 2.42,
|
1087 |
+
"learning_rate": 4.454075737685456e-06,
|
1088 |
+
"loss": 0.0002,
|
1089 |
+
"step": 18000
|
1090 |
+
}
|
1091 |
+
],
|
1092 |
+
"logging_steps": 100,
|
1093 |
+
"max_steps": 22296,
|
1094 |
+
"num_train_epochs": 3,
|
1095 |
+
"save_steps": 3000,
|
1096 |
+
"total_flos": 2.899990453107917e+18,
|
1097 |
+
"trial_name": null,
|
1098 |
+
"trial_params": null
|
1099 |
+
}
|
LLM-Detector-V5-11w/checkpoint-18000/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34a6604f99a4d8b8974d5d75cff26a2d414536f9959193cd5fdb32762398d2f1
|
3 |
+
size 4600
|
LLM-Detector-V5-11w/checkpoint-21000/README.md
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: ./Qwen-14B-Chat
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Shared by [optional]:** [More Information Needed]
|
22 |
+
- **Model type:** [More Information Needed]
|
23 |
+
- **Language(s) (NLP):** [More Information Needed]
|
24 |
+
- **License:** [More Information Needed]
|
25 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
26 |
+
|
27 |
+
### Model Sources [optional]
|
28 |
+
|
29 |
+
<!-- Provide the basic links for the model. -->
|
30 |
+
|
31 |
+
- **Repository:** [More Information Needed]
|
32 |
+
- **Paper [optional]:** [More Information Needed]
|
33 |
+
- **Demo [optional]:** [More Information Needed]
|
34 |
+
|
35 |
+
## Uses
|
36 |
+
|
37 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
38 |
+
|
39 |
+
### Direct Use
|
40 |
+
|
41 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
42 |
+
|
43 |
+
[More Information Needed]
|
44 |
+
|
45 |
+
### Downstream Use [optional]
|
46 |
+
|
47 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
48 |
+
|
49 |
+
[More Information Needed]
|
50 |
+
|
51 |
+
### Out-of-Scope Use
|
52 |
+
|
53 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Bias, Risks, and Limitations
|
58 |
+
|
59 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Recommendations
|
64 |
+
|
65 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
66 |
+
|
67 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
68 |
+
|
69 |
+
## How to Get Started with the Model
|
70 |
+
|
71 |
+
Use the code below to get started with the model.
|
72 |
+
|
73 |
+
[More Information Needed]
|
74 |
+
|
75 |
+
## Training Details
|
76 |
+
|
77 |
+
### Training Data
|
78 |
+
|
79 |
+
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Training Procedure
|
84 |
+
|
85 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
86 |
+
|
87 |
+
#### Preprocessing [optional]
|
88 |
+
|
89 |
+
[More Information Needed]
|
90 |
+
|
91 |
+
|
92 |
+
#### Training Hyperparameters
|
93 |
+
|
94 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
95 |
+
|
96 |
+
#### Speeds, Sizes, Times [optional]
|
97 |
+
|
98 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
99 |
+
|
100 |
+
[More Information Needed]
|
101 |
+
|
102 |
+
## Evaluation
|
103 |
+
|
104 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
105 |
+
|
106 |
+
### Testing Data, Factors & Metrics
|
107 |
+
|
108 |
+
#### Testing Data
|
109 |
+
|
110 |
+
<!-- This should link to a Data Card if possible. -->
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
#### Factors
|
115 |
+
|
116 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
#### Metrics
|
121 |
+
|
122 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
### Results
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
#### Summary
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
## Model Examination [optional]
|
135 |
+
|
136 |
+
<!-- Relevant interpretability work for the model goes here -->
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
## Environmental Impact
|
141 |
+
|
142 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
143 |
+
|
144 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
145 |
+
|
146 |
+
- **Hardware Type:** [More Information Needed]
|
147 |
+
- **Hours used:** [More Information Needed]
|
148 |
+
- **Cloud Provider:** [More Information Needed]
|
149 |
+
- **Compute Region:** [More Information Needed]
|
150 |
+
- **Carbon Emitted:** [More Information Needed]
|
151 |
+
|
152 |
+
## Technical Specifications [optional]
|
153 |
+
|
154 |
+
### Model Architecture and Objective
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
### Compute Infrastructure
|
159 |
+
|
160 |
+
[More Information Needed]
|
161 |
+
|
162 |
+
#### Hardware
|
163 |
+
|
164 |
+
[More Information Needed]
|
165 |
+
|
166 |
+
#### Software
|
167 |
+
|
168 |
+
[More Information Needed]
|
169 |
+
|
170 |
+
## Citation [optional]
|
171 |
+
|
172 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
173 |
+
|
174 |
+
**BibTeX:**
|
175 |
+
|
176 |
+
[More Information Needed]
|
177 |
+
|
178 |
+
**APA:**
|
179 |
+
|
180 |
+
[More Information Needed]
|
181 |
+
|
182 |
+
## Glossary [optional]
|
183 |
+
|
184 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
185 |
+
|
186 |
+
[More Information Needed]
|
187 |
+
|
188 |
+
## More Information [optional]
|
189 |
+
|
190 |
+
[More Information Needed]
|
191 |
+
|
192 |
+
## Model Card Authors [optional]
|
193 |
+
|
194 |
+
[More Information Needed]
|
195 |
+
|
196 |
+
## Model Card Contact
|
197 |
+
|
198 |
+
[More Information Needed]
|
199 |
+
|
200 |
+
|
201 |
+
## Training procedure
|
202 |
+
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: QuantizationMethod.BITS_AND_BYTES
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: float16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
|
219 |
+
- PEFT 0.6.2
|
LLM-Detector-V5-11w/checkpoint-21000/adapter_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "./Qwen-14B-Chat",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"lora_alpha": 16.0,
|
12 |
+
"lora_dropout": 0.1,
|
13 |
+
"modules_to_save": null,
|
14 |
+
"peft_type": "LORA",
|
15 |
+
"r": 8,
|
16 |
+
"rank_pattern": {},
|
17 |
+
"revision": null,
|
18 |
+
"target_modules": [
|
19 |
+
"c_attn"
|
20 |
+
],
|
21 |
+
"task_type": "CAUSAL_LM"
|
22 |
+
}
|
LLM-Detector-V5-11w/checkpoint-21000/adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9676e557f268125346b3cafb8bc11f0b945e39e8f5840ece332ce5ffbdaf7db5
|
3 |
+
size 26243102
|
LLM-Detector-V5-11w/checkpoint-21000/optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18d139866f1a7697e27b3d0a75fec4ce13c19f7f91e0d9c12607c2c42fe9287d
|
3 |
+
size 52496442
|
LLM-Detector-V5-11w/checkpoint-21000/qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
LLM-Detector-V5-11w/checkpoint-21000/rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c69dd10e027369fa679f0710061cf9a69c9ad685e2576c58aa25eeecc76db570
|
3 |
+
size 14244
|
LLM-Detector-V5-11w/checkpoint-21000/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4fa4b00b1cba54897c2cbf8301611ceaa02033f2121ce9abb7ed43742023e50
|
3 |
+
size 1064
|
LLM-Detector-V5-11w/checkpoint-21000/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_end|>"
|
4 |
+
],
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"pad_token": "<|endoftext|>"
|
7 |
+
}
|
LLM-Detector-V5-11w/checkpoint-21000/tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
LLM-Detector-V5-11w/checkpoint-21000/tokenizer_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoTokenizer": [
|
4 |
+
"tokenization_qwen.QWenTokenizer",
|
5 |
+
null
|
6 |
+
]
|
7 |
+
},
|
8 |
+
"clean_up_tokenization_spaces": true,
|
9 |
+
"model_max_length": 8192,
|
10 |
+
"padding_side": "right",
|
11 |
+
"split_special_tokens": false,
|
12 |
+
"tokenizer_class": "QWenTokenizer"
|
13 |
+
}
|