import os import argparse import json import sys sys.setrecursionlimit(500000) # Fix the error message of RecursionError: maximum recursion depth exceeded while calling a Python object. You can change the number as you want. if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--add_auxiliary_data", type=bool, help="Whether to add extra data as fine-tuning helper") parser.add_argument("--languages", default="CJE") args = parser.parse_args() if args.languages == "CJE": langs = ["[ZH]", "[JA]", "[EN]"] elif args.languages == "CJ": langs = ["[ZH]", "[JA]"] elif args.languages == "C": langs = ["[ZH]"] elif args.languages == "CJKE": langs = ["[ZH]", "[JA]", "[EN]", "[KO]"] new_annos = [] # Source 1: transcribed short audios if os.path.exists("short_character_anno.txt"): with open("short_character_anno.txt", 'r', encoding='utf-8') as f: short_character_anno = f.readlines() new_annos += short_character_anno # Source 2: transcribed long audio segments if os.path.exists("./long_character_anno.txt"): with open("./long_character_anno.txt", 'r', encoding='utf-8') as f: long_character_anno = f.readlines() new_annos += long_character_anno # Get all speaker names speakers = [] for line in new_annos: path, speaker, text = line.split("|") if speaker not in speakers: speakers.append(speaker) assert (len(speakers) != 0), "No audio file found. Please check your uploaded file structure." # Source 3 (Optional): sampled audios as extra training helpers if args.add_auxiliary_data: with open("./sampled_audio4ft.txt", 'r', encoding='utf-8') as f: old_annos = f.readlines() # filter old_annos according to supported languages filtered_old_annos = [] for line in old_annos: for lang in langs: if lang in line: filtered_old_annos.append(line) old_annos = filtered_old_annos for line in old_annos: path, speaker, text = line.split("|") if speaker not in speakers: speakers.append(speaker) num_old_voices = len(old_annos) num_new_voices = len(new_annos) # STEP 1: balance number of new & old voices cc_duplicate = num_old_voices // num_new_voices if cc_duplicate == 0: cc_duplicate = 1 # STEP 2: modify config file with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f: hps = json.load(f) # assign ids to new speakers speaker2id = {} for i, speaker in enumerate(speakers): speaker2id[speaker] = i # modify n_speakers hps['data']["n_speakers"] = len(speakers) # overwrite speaker names hps['speakers'] = speaker2id hps['train']['log_interval'] = 10 hps['train']['eval_interval'] = 100 hps['train']['batch_size'] = 16 hps['data']['training_files'] = "final_annotation_train.txt" hps['data']['validation_files'] = "final_annotation_val.txt" # save modified config with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f: json.dump(hps, f, indent=2) # STEP 3: clean annotations, replace speaker names with assigned speaker IDs import text cleaned_new_annos = [] for i, line in enumerate(new_annos): path, speaker, txt = line.split("|") if len(txt) > 150: continue cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']) cleaned_text += "\n" if not cleaned_text.endswith("\n") else "" cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text) cleaned_old_annos = [] for i, line in enumerate(old_annos): path, speaker, txt = line.split("|") if len(txt) > 150: continue cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']) cleaned_text += "\n" if not cleaned_text.endswith("\n") else "" cleaned_old_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text) # merge with old annotation final_annos = cleaned_old_annos + cc_duplicate * cleaned_new_annos # save annotation file with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f: for line in final_annos: f.write(line) # save annotation file for validation with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f: for line in cleaned_new_annos: f.write(line) print("finished") else: # Do not add extra helper data # STEP 1: modify config file with open("./configs/finetune_speaker.json", 'r', encoding='utf-8') as f: hps = json.load(f) # assign ids to new speakers speaker2id = {} for i, speaker in enumerate(speakers): speaker2id[speaker] = i # modify n_speakers hps['data']["n_speakers"] = len(speakers) # overwrite speaker names hps['speakers'] = speaker2id hps['train']['log_interval'] = 10 hps['train']['eval_interval'] = 100 hps['train']['batch_size'] = 16 hps['data']['training_files'] = "final_annotation_train.txt" hps['data']['validation_files'] = "final_annotation_val.txt" # save modified config with open("./configs/modified_finetune_speaker.json", 'w', encoding='utf-8') as f: json.dump(hps, f, indent=2) # STEP 2: clean annotations, replace speaker names with assigned speaker IDs import text cleaned_new_annos = [] for i, line in enumerate(new_annos): path, speaker, txt = line.split("|") if len(txt) > 150: continue cleaned_text = text._clean_text(txt, hps['data']['text_cleaners']).replace("[ZH]", "") cleaned_text += "\n" if not cleaned_text.endswith("\n") else "" cleaned_new_annos.append(path + "|" + str(speaker2id[speaker]) + "|" + cleaned_text) final_annos = cleaned_new_annos # save annotation file with open("./final_annotation_train.txt", 'w', encoding='utf-8') as f: for line in final_annos: f.write(line) # save annotation file for validation with open("./final_annotation_val.txt", 'w', encoding='utf-8') as f: for line in cleaned_new_annos: f.write(line) print("finished")