File size: 4,731 Bytes
4c0b0e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import torch
from torch import nn
from transformers import HubertConfig, HubertModel
import logging

# Ignore fairseq's logger
logging.getLogger("fairseq").setLevel(logging.WARNING)
logging.getLogger("torch.distributed.nn.jit.instantiator").setLevel(logging.WARNING)

from fairseq import checkpoint_utils

models, _, _ = checkpoint_utils.load_model_ensemble_and_task(
    ["content-vec-best-legacy-500.pt"], suffix=""
)
model = models[0]
model.eval()
model.eval()


class HubertModelWithFinalProj(HubertModel):
    def __init__(self, config):
        super().__init__(config)

        self.final_proj = nn.Linear(config.hidden_size, config.classifier_proj_size)


# Default Config
hubert = HubertModelWithFinalProj(HubertConfig())

# huggingface: fairseq
mapping = {
    "masked_spec_embed": "mask_emb",
    "encoder.layer_norm.bias": "encoder.layer_norm.bias",
    "encoder.layer_norm.weight": "encoder.layer_norm.weight",
    "encoder.pos_conv_embed.conv.bias": "encoder.pos_conv.0.bias",
    "encoder.pos_conv_embed.conv.weight_g": "encoder.pos_conv.0.weight_g",
    "encoder.pos_conv_embed.conv.weight_v": "encoder.pos_conv.0.weight_v",
    "feature_projection.layer_norm.bias": "layer_norm.bias",
    "feature_projection.layer_norm.weight": "layer_norm.weight",
    "feature_projection.projection.bias": "post_extract_proj.bias",
    "feature_projection.projection.weight": "post_extract_proj.weight",
    "final_proj.bias": "final_proj.bias",
    "final_proj.weight": "final_proj.weight",
}

# Convert encoder
for layer in range(12):
    for j in ["q", "k", "v"]:
        mapping[
            f"encoder.layers.{layer}.attention.{j}_proj.weight"
        ] = f"encoder.layers.{layer}.self_attn.{j}_proj.weight"
        mapping[
            f"encoder.layers.{layer}.attention.{j}_proj.bias"
        ] = f"encoder.layers.{layer}.self_attn.{j}_proj.bias"

    mapping[
        f"encoder.layers.{layer}.final_layer_norm.bias"
    ] = f"encoder.layers.{layer}.final_layer_norm.bias"
    mapping[
        f"encoder.layers.{layer}.final_layer_norm.weight"
    ] = f"encoder.layers.{layer}.final_layer_norm.weight"

    mapping[
        f"encoder.layers.{layer}.layer_norm.bias"
    ] = f"encoder.layers.{layer}.self_attn_layer_norm.bias"
    mapping[
        f"encoder.layers.{layer}.layer_norm.weight"
    ] = f"encoder.layers.{layer}.self_attn_layer_norm.weight"

    mapping[
        f"encoder.layers.{layer}.attention.out_proj.bias"
    ] = f"encoder.layers.{layer}.self_attn.out_proj.bias"
    mapping[
        f"encoder.layers.{layer}.attention.out_proj.weight"
    ] = f"encoder.layers.{layer}.self_attn.out_proj.weight"

    mapping[
        f"encoder.layers.{layer}.feed_forward.intermediate_dense.bias"
    ] = f"encoder.layers.{layer}.fc1.bias"
    mapping[
        f"encoder.layers.{layer}.feed_forward.intermediate_dense.weight"
    ] = f"encoder.layers.{layer}.fc1.weight"

    mapping[
        f"encoder.layers.{layer}.feed_forward.output_dense.bias"
    ] = f"encoder.layers.{layer}.fc2.bias"
    mapping[
        f"encoder.layers.{layer}.feed_forward.output_dense.weight"
    ] = f"encoder.layers.{layer}.fc2.weight"

# Convert Conv Layers
for layer in range(7):
    mapping[
        f"feature_extractor.conv_layers.{layer}.conv.weight"
    ] = f"feature_extractor.conv_layers.{layer}.0.weight"

    if layer != 0:
        continue

    mapping[
        f"feature_extractor.conv_layers.{layer}.layer_norm.weight"
    ] = f"feature_extractor.conv_layers.{layer}.2.weight"
    mapping[
        f"feature_extractor.conv_layers.{layer}.layer_norm.bias"
    ] = f"feature_extractor.conv_layers.{layer}.2.bias"

hf_keys = set(hubert.state_dict().keys())
fair_keys = set(model.state_dict().keys())

hf_keys -= set(mapping.keys())
fair_keys -= set(mapping.values())

for i, j in zip(sorted(hf_keys), sorted(fair_keys)):
    print(i, j)

print(hf_keys, fair_keys)
print(len(hf_keys), len(fair_keys))

# try loading the weights
new_state_dict = {}
for k, v in mapping.items():
    new_state_dict[k] = model.state_dict()[v]

x = hubert.load_state_dict(new_state_dict, strict=False)
print(x)
hubert.eval()

with torch.no_grad():
    new_input = torch.randn(1, 16384)

    result1 = hubert(new_input, output_hidden_states=True)["hidden_states"][9]
    result1 = hubert.final_proj(result1)

    result2 = model.extract_features(
        **{
            "source": new_input,
            "padding_mask": torch.zeros(1, 16384, dtype=torch.bool),
            # "features_only": True,
            "output_layer": 9,
        }
    )[0]
    result2 = model.final_proj(result2)

    assert torch.allclose(result1, result2, atol=1e-3)

print("Sanity check passed")

# Save huggingface model
hubert.save_pretrained(".")
print("Saved model")