nikolamilosevic
commited on
Commit
·
c7b407e
1
Parent(s):
7edec27
Update code
Browse files
README.md
CHANGED
@@ -19,6 +19,7 @@ tags:
|
|
19 |
- medical
|
20 |
- zero-shot
|
21 |
- few-shot
|
|
|
22 |
---
|
23 |
# Zero and few shot NER for biomedical texts
|
24 |
|
@@ -27,17 +28,22 @@ Model takes as input two strings. String1 is NER label. String1 must be phrase f
|
|
27 |
model outputs list of zeros and ones corresponding to the occurance of Named Entity and corresponing to the tokens(tokens given by transformer tokenizer) of the Sring2.
|
28 |
|
29 |
## Example of usage
|
30 |
-
|
31 |
from transformers import AutoTokenizer
|
32 |
-
|
|
|
|
|
33 |
tokenizer = AutoTokenizer.from_pretrained(modelname) ## loading the tokenizer of that model
|
34 |
-
string1='Drug'
|
35 |
-
string2='No recent antibiotics or other nephrotoxins, and no symptoms of UTI with benign UA.'
|
36 |
-
encodings = tokenizer(string1,string2, is_split_into_words=False,
|
37 |
-
|
38 |
-
|
|
|
39 |
model = BertForTokenClassification.from_pretrained(modelname, num_labels=2)
|
40 |
-
prediction_logits=model(**encodings)
|
|
|
|
|
41 |
|
42 |
## Code availibility
|
43 |
|
|
|
19 |
- medical
|
20 |
- zero-shot
|
21 |
- few-shot
|
22 |
+
library_name: transformers
|
23 |
---
|
24 |
# Zero and few shot NER for biomedical texts
|
25 |
|
|
|
28 |
model outputs list of zeros and ones corresponding to the occurance of Named Entity and corresponing to the tokens(tokens given by transformer tokenizer) of the Sring2.
|
29 |
|
30 |
## Example of usage
|
31 |
+
```
|
32 |
from transformers import AutoTokenizer
|
33 |
+
from transformers import BertForTokenClassification
|
34 |
+
|
35 |
+
modelname = 'ProdicusII/ZeroShotBioNER' # modelpath
|
36 |
tokenizer = AutoTokenizer.from_pretrained(modelname) ## loading the tokenizer of that model
|
37 |
+
string1 = 'Drug'
|
38 |
+
string2 = 'No recent antibiotics or other nephrotoxins, and no symptoms of UTI with benign UA.'
|
39 |
+
encodings = tokenizer(string1, string2, is_split_into_words=False,
|
40 |
+
padding=True, truncation=True, add_special_tokens=True, return_offsets_mapping=False,
|
41 |
+
max_length=512, return_tensors='pt')
|
42 |
+
|
43 |
model = BertForTokenClassification.from_pretrained(modelname, num_labels=2)
|
44 |
+
prediction_logits = model(**encodings)
|
45 |
+
print(prediction_logits)
|
46 |
+
```
|
47 |
|
48 |
## Code availibility
|
49 |
|