--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - yashtiwari/PaulMooney-Medical-ASR-Data metrics: - wer model-index: - name: Whisper Dr Patient Conversation results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Medical ASR type: yashtiwari/PaulMooney-Medical-ASR-Data metrics: - type: wer value: 21.313058170407917 name: Wer --- # Whisper Dr Patient Conversation This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Medical ASR dataset. It achieves the following results on the evaluation set: - Loss: 0.0967 - Wer: 21.3131 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6737 | 0.1357 | 100 | 0.2638 | 14.9650 | | 0.212 | 0.2714 | 200 | 0.1960 | 11.7789 | | 0.2321 | 0.4071 | 300 | 0.1506 | 14.8202 | | 0.1462 | 0.5427 | 400 | 0.1126 | 18.3683 | | 0.1419 | 0.6784 | 500 | 0.0967 | 21.3131 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3