--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - MaziyarPanahi/Calme-7B-Instruct-v0.9 - S-miguel/The-Trinity-Coder-7B - grimjim/kukulemon-7B base_model: - MaziyarPanahi/Calme-7B-Instruct-v0.9 - S-miguel/The-Trinity-Coder-7B - grimjim/kukulemon-7B --- # Lumina-5-Instruct Lumina-5-Instruct is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [MaziyarPanahi/Calme-7B-Instruct-v0.9](https://huggingface.co/MaziyarPanahi/Calme-7B-Instruct-v0.9) * [S-miguel/The-Trinity-Coder-7B](https://huggingface.co/S-miguel/The-Trinity-Coder-7B) * [grimjim/kukulemon-7B](https://huggingface.co/grimjim/kukulemon-7B) ## 🧩 Configuration ```yaml base_model: MaziyarPanahi/Calme-7B-Instruct-v0.9 experts: - source_model: MaziyarPanahi/Calme-7B-Instruct-v0.9 positive_prompts: - "chat" - "assistant" - source_model: S-miguel/The-Trinity-Coder-7B positive_prompts: - "code" - "reason" - "math" - source_model: grimjim/kukulemon-7B positive_prompts: - "roleplay" - "write" - "scene" - "story" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "Ppoyaa/Lumina-5-Instruct" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```