File size: 6,634 Bytes
64f2664 507cda8 64f2664 e7c0e4e 64f2664 c7a02fe a932efa c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe e30f6ae c7a02fe a932efa c7a02fe 48d90e7 b4a75cf 238fc90 23bf2a5 3e85c4b 238fc90 64f2664 507cda8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
---
license: apache-2.0
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
model-index:
- name: Lumina-3.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 71.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.48
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 75.66
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.98
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 67.93
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ppoyaa/Lumina-3.5
name: Open LLM Leaderboard
---
# Lumina-3.5
Lumina-3.5 is a Mixture of Experts (MoE) made with [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) with improved reasoning from [Lumina-3](https://huggingface.co/Ppoyaa/Lumina-3). This model uses a context window of up to 32k.
# Response Examples
``` Math
Input: 25 - 4 * 2 + 3 = ?
------------------------------------
Output: To solve this equation, we will follow the order of operations (PEMDAS/BODMAS). This means performing any multiplications and divisions first from left to right, and then additions and subtractions from left to right.
The given equation is: 25 - 4 * 2 + 3
First, let's perform the multiplication:
4 * 2 = 8
Now, our equation looks like: 25 - 8 + 3
Next, perform the subtraction:
25 - 8 = 17
Finally, do the addition:
17 + 3 = 20
So, the result of the equation 25 - 4 * 2 + 3 is 20.
```
``` Reasoning
Input: Jane is faster than Joe. Joe is faster than Sam. Is Sam faster than Jane? Explain your reasoning step by step.
------------------------------------
Output: To answer this question, let's analyze the given information step by step:
We are provided with a comparison between three individuals - Jane, Joe, and Sam - in terms of their relative speeds. The statements tell us the following about their ranks:
Jane > Joe (Jane is faster than Joe)
Joe > Sam (Joe is faster than Sam)
Now we need to determine if the opposite relationship holds true: whether Sam is faster than Jane or not. Based on the given comparisons, we know that both Jane and Joe have faster speeds compared to Sam. There isn't any piece of information suggesting otherwise.
Since the original premise established an ordered ranking among these individuals (Jane > Joe > Sam), and the direct opposite of the relationship between Sam and the other two is not present, we cannot conclude that Sam is faster than Jane.
Thus, based on the provided information, our reasoning confirms that Sam is not faster than Jane.
```
## 🏆 Open LLM Leaderboard Evaluation Results
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.41|
|AI2 Reasoning Challenge (25-Shot)|71.59|
|HellaSwag (10-Shot) |88.82|
|MMLU (5-Shot) |64.48|
|TruthfulQA (0-shot) |75.66|
|Winogrande (5-shot) |83.98|
|GSM8k (5-shot) |67.93|
# Quants
Special thanks to GGUFs made by [mradermacher](https://huggingface.co/mradermacher)
* [mradermacher/Lumina-3.5-GGUF](https://huggingface.co/mradermacher/Lumina-3.5-GGUF)
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ppoyaa/Lumina-3.5"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Ppoyaa__Lumina-3.5)
| Metric |Value|
|---------------------------------|----:|
|Avg. |75.41|
|AI2 Reasoning Challenge (25-Shot)|71.59|
|HellaSwag (10-Shot) |88.82|
|MMLU (5-Shot) |64.48|
|TruthfulQA (0-shot) |75.66|
|Winogrande (5-shot) |83.98|
|GSM8k (5-shot) |67.93|
|