michaelroyzen commited on
Commit
3aabef8
·
1 Parent(s): 0d28aca

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +90 -0
README.md CHANGED
@@ -1,3 +1,93 @@
1
  ---
2
  license: llama2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ model-index:
4
+ - name: Phind-CodeLlama-34B-v1
5
+ results:
6
+ - task:
7
+ type: text-generation
8
+ dataset:
9
+ type: openai_humaneval
10
+ name: HumanEval
11
+ metrics:
12
+ - name: pass@1
13
+ type: pass@1
14
+ value: 69.5%
15
+ verified: false
16
+ tags:
17
+ - code llama
18
  ---
19
+
20
+ # **Phind-CodeLlama-34B-Python-v1**
21
+ We've fine-tuned CodeLlama-34B and CodeLlama-34B-Python on an internal Phind dataset that achieve 67.6% and 69.5% pass@1 on HumanEval, respectively. GPT-4 achieves 67%. We've applied OpenAI's decontamination methodology to our dataset to ensure result validity.
22
+
23
+ More details can be found on our [blog post](https://www.phind.com/blog/code-llama-beats-gpt4).
24
+
25
+ ## Model Details
26
+ This model is fine-tuned from CodeLlama-34B-Python and achieves 69.5% pass@1 on HumanEval.
27
+
28
+ ## Dataset Details
29
+ We fined-tuned on a proprietary dataset of ~80k high quality programming problems and solutions. This dataset consists of instruction-answer pairs instead of code completion examples, making it structurally different from HumanEval. The Phind models were trained for 2 epochs, for a total of ~160k examples shown. LoRA was not used -- both models are a native finetune. We used DeepSpeed ZeRO 3 and Flash Attention 2 to train these models in three hours on 32 A100-80GB GPUs. We used a sequence length of 4096 tokens.
30
+
31
+ ## How to Get Started with the Model
32
+
33
+ Make sure to install Transformers from the main git branch:
34
+
35
+ ```bash
36
+ pip install git+https://github.com/huggingface/transformers.git
37
+ ```
38
+
39
+ To reproduce our results:
40
+
41
+ ```python
42
+
43
+ from transformers import AutoTokenizer, LlamaForCausalLM
44
+ from human_eval.data import write_jsonl, read_problems
45
+ from tqdm import tqdm
46
+
47
+ # initialize the model
48
+
49
+ model_path = "Phind/Phind-CodeLlama-34B-v1"
50
+ model = LlamaForCausalLM.from_pretrained(model_path, device_map="auto")
51
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
52
+
53
+ # HumanEval helper
54
+
55
+ def generate_one_completion(prompt: str):
56
+ tokenizer.pad_token = tokenizer.eos_token
57
+ inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=4096)
58
+
59
+ # Generate
60
+ generate_ids = model.generate(inputs.input_ids.to("cuda"), max_new_tokens=256, do_sample=True, top_p=0.75, top_k=40, temperature=0.1)
61
+ completion = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
62
+ completion = completion.replace(prompt, "").split("\n\n\n")[0]
63
+
64
+ return completion
65
+
66
+ # perform HumanEval
67
+ problems = read_problems()
68
+
69
+ num_samples_per_task = 1
70
+ samples = [
71
+ dict(task_id=task_id, completion=generate_one_completion(problems[task_id]["prompt"]))
72
+ for task_id in tqdm(problems)
73
+ for _ in range(num_samples_per_task)
74
+ ]
75
+ write_jsonl("samples.jsonl", samples)
76
+
77
+ # run `evaluate_functional_correctness samples.jsonl` in your HumanEval code sandbox
78
+ ```
79
+
80
+ ## Bias, Risks, and Limitations
81
+
82
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
83
+ This model has undergone very limited testing. Additional safety testing should be performed before any real-world deployments.
84
+
85
+
86
+ ## Training details
87
+
88
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
89
+
90
+ - **Hardware Type:** 32x A100-80GB
91
+ - **Hours used:** 90 GPU-hours
92
+ - **Cloud Provider:** AWS
93
+ - **Compute Region:** us-east-1