{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f7bfda3ba00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679923144539337619, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHsGWT+LYYw/CtFYv7M5mr6+MC2+ibwzP8W7IkDA9R2/Xlifv36WQr71HpU9CLwDP9blwj/MuD67OD2Tv33mBD8dPbm/3JL2O4hmxT7a27U8uJvRviSf377wdjS/WkskvlA2Kr+Lmq6/3jicPoo3Lz+Ihko+t+JyP1q7FL++KIw/S/HqPpR1F8CA4Be/TjN/P/F3sT6Vbps/+7abPwbIKz8Zf8K/J69MPrKIuj49u1M/PHC3v+AfAD9UI6C/vdNcP+djtT+k5c69/cKbvt26aL9QNiq/i5quv6nAUcCNA7u/xKKWPakJFT/1/7W9D2TiPqMKLD7BGxo/HN18P8jxhz+4PUI+Psw+vobZkD+XFzm/s5hWvxyx2T9YV+K9cELBv5wKIb9P1lU/cFjyvqyTwz9zmJU/2GpavmHK+r7LTWY/UDYqv4uarr/eOJw+ijcvP+f4P7+5Nqy+nDIcP8EQR77dI7a+YkcYvu8p0T7cYgk/jFZhvbFKorwSL4U+G58Hv+sWRT7QP84/wY30vdpIUkDzZN2+48WfPRAKxz6qYZU8d42vP1x6+LoV47q+Oz89P1A2Kr+1qzs/3jicPoo3Lz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABJ0K21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA129nuwAAAAA1vvC/AAAAACAhDL4AAAAAalXwPwAAAAD2MbA7AAAAAFAw9z8AAAAAiPOKvQAAAAA+nuW/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJB6XtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEY6nL0AAAAAqtjmvwAAAAB1koa9AAAAAD0l+D8AAAAAi3fOPAAAAABXmQBAAAAAAGTLqz0AAAAADrzovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIrWj7YAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBR+Xk8AAAAAHiJ5b8AAAAAJ47tvQAAAAAPwABAAAAAAAILB74AAAAA3jP1PwAAAABGIqi9AAAAAIiKAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB7d741AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAVCqdvQAAAACYLfy/AAAAAGbYAr4AAAAAqSfbPwAAAAAAClc9AAAAANJF+z8AAAAArM9UvQAAAADcnfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJFIKgpSaVmMAWyUTegDjAF0lEdAqd2G74BV/HV9lChoBkdAlPJxbW3BpGgHTegDaAhHQKnelikO7QN1fZQoaAZHQJaFs1CPZIxoB03oA2gIR0Cp5HjHGS6ldX2UKGgGR0CMHedq+JxeaAdN6ANoCEdAqeYy7wrlNnV9lChoBkdAk8QX/5tWMmgHTegDaAhHQKnqL9w3o9t1fZQoaAZHQJUNFjd56dFoB03oA2gIR0Cp6tku6ErYdX2UKGgGR0CXByyVv/BFaAdN6ANoCEdAqfCkcOskp3V9lChoBkdAmIEV3MY/FGgHTegDaAhHQKnybgLJCBx1fZQoaAZHQJvNne1rqMZoB03oA2gIR0Cp+Cba7EpBdX2UKGgGR0CdEijXnQpnaAdN6ANoCEdAqfkm3vx6OnV9lChoBkdAnLiiHqNZNmgHTegDaAhHQKoAiFnIyTJ1fZQoaAZHQJr3LUe+23NoB03oA2gIR0CqAj7Ackt3dX2UKGgGR0CdUsbiqABlaAdN6ANoCEdAqgYtW8yvcXV9lChoBkdAnat3/5tWMmgHTegDaAhHQKoG1MC9ytF1fZQoaAZHQJFCKWkadc1oB03oA2gIR0CqDKoqLCN0dX2UKGgGR0CX/CHAAQxvaAdN6ANoCEdAqg5m3z+WGHV9lChoBkdAneyuHnEET2gHTegDaAhHQKoTAY1He8B1fZQoaAZHQJtiehf0EoxoB03oA2gIR0CqE/Cj1wo9dX2UKGgGR0Cbxnz6ab4KaAdN6ANoCEdAqhwZjUd7wHV9lChoBkdAnA/YKIBRymgHTegDaAhHQKodyjwhGH51fZQoaAZHQJElH1bqyGBoB03oA2gIR0CqIa62nbZfdX2UKGgGR0CcRJ3n6l+FaAdN6ANoCEdAqiJU6cRUWHV9lChoBkdAlzo2b5M10mgHTegDaAhHQKooKois4kx1fZQoaAZHQJ12VMPBi1BoB03oA2gIR0CqKfq7I1cddX2UKGgGR0CccJZ1V5ryaAdN6ANoCEdAqi3tTNt65XV9lChoBkdAlkemZqmCRWgHTegDaAhHQKounf6XSjR1fZQoaAZHQIbi6tV7x/doB03oA2gIR0CqNzJgb6xgdX2UKGgGR0CYKJJx//edaAdN6ANoCEdAqjmgPuogm3V9lChoBkdAlkxkJfICEGgHTegDaAhHQKo9oacZtN11fZQoaAZHQJkQFA8jiXJoB03oA2gIR0CqPkZhKDkEdX2UKGgGR0CX6DbWEsasaAdN6ANoCEdAqkQOpKjBVXV9lChoBkdAk6XABtDUmWgHTegDaAhHQKpFw4+bExZ1fZQoaAZHQJeuCmNzbN9oB03oA2gIR0CqSboRIz3zdX2UKGgGR0CdhzE1EVnFaAdN6ANoCEdAqkpc4cWCVnV9lChoBkdAoGYvkcS5AmgHTegDaAhHQKpRcxHG0eF1fZQoaAZHQKCyDCHh0hhoB03oA2gIR0CqVBJtBOYZdX2UKGgGR0CfMWwjMV1waAdN6ANoCEdAqlkTowEhaHV9lChoBkdAoRfDI5o4/GgHTegDaAhHQKpZueumrKh1fZQoaAZHQKEPTfbblBBoB03oA2gIR0CqX2dh7VridX2UKGgGR0CgsmQxnFo+aAdN6ANoCEdAqmEb8tPHk3V9lChoBkdAoJpT6SDAamgHTegDaAhHQKplE1stTUB1fZQoaAZHQKBt+44Ia99oB03oA2gIR0CqZbSzollcdX2UKGgGR0ChNAi5EtulaAdN6ANoCEdAqmutf3N9pnV9lChoBkdAoR5jbg0j1WgHTegDaAhHQKpuJogV45d1fZQoaAZHQKFvC1NxlxxoB03oA2gIR0CqdDKRU3n7dX2UKGgGR0Cg7/WhqTKUaAdN6ANoCEdAqnUx22XsxHV9lChoBkdAoGs4YJmdy2gHTegDaAhHQKp7KSmIj4Z1fZQoaAZHQKDccgAZKnNoB03oA2gIR0CqfOmFBY3edX2UKGgGR0CfPCRplBhQaAdN6ANoCEdAqoDu+ZgG8nV9lChoBkdAoA0FkSVW0mgHTegDaAhHQKqBktZFG5N1fZQoaAZHQJ6Dpk9U0eloB03oA2gIR0Cqh2ToEB8ydX2UKGgGR0CfDjZKnNxEaAdN6ANoCEdAqoko4KhL5HV9lChoBkdAnwohG6PKdWgHTegDaAhHQKqO1DuSfUZ1fZQoaAZHQJ5qP3Zf2K5oB03oA2gIR0Cqj9NWuHN5dX2UKGgGR0CfNr95yEL6aAdN6ANoCEdAqpbaOtGNJnV9lChoBkdAoOGseZG8VmgHTegDaAhHQKqYlQTmGM51fZQoaAZHQJ7rYq4H5ahoB03oA2gIR0CqnIkSVW0adX2UKGgGR0CedOvv0AcUaAdN6ANoCEdAqp04PK+zt3V9lChoBkdAoEd7CrLhaWgHTegDaAhHQKqjJSv1UVB1fZQoaAZHQJ/fXE4vN/xoB03oA2gIR0CqpOHVPN3XdX2UKGgGR0CgrQ92X9iuaAdN6ANoCEdAqql1A7gbZXV9lChoBkdAoSXEx46fa2gHTegDaAhHQKqqaaisXBR1fZQoaAZHQJ5hK2gFotdoB03oA2gIR0CqsqtgSeyzdX2UKGgGR0CghcSOq//OaAdN6ANoCEdAqrSATK1XvHV9lChoBkdAnaQyjtXxOWgHTegDaAhHQKq4hYsd1dR1fZQoaAZHQJvNwV0tAcFoB03oA2gIR0CquSMZgogFdX2UKGgGR0ChGMinP3SKaAdN6ANoCEdAqr7qS1Vo6HV9lChoBkdAoKvaaoddV2gHTegDaAhHQKrArw1BMSN1fZQoaAZHQKEgoFINEw5oB03oA2gIR0CqxKCpm29ddX2UKGgGR0CfYoPzWf9QaAdN6ANoCEdAqsVC8lHBlHV9lChoBkdAmf20SmIj4mgHTegDaAhHQKrNvfReC051fZQoaAZHQJQUbZrYXftoB03oA2gIR0Cq0BYMfA9FdX2UKGgGR0CeZ8mapgkUaAdN6ANoCEdAqtP5b4agmXV9lChoBkdAoA7t2C/XXmgHTegDaAhHQKrUoOUdJat1fZQoaAZHQKAdYT+vQnhoB03oA2gIR0Cq2lqMFUyYdX2UKGgGR0CbYkHRCx/vaAdN6ANoCEdAqtwXi1iON3V9lChoBkdAnwAZ/wy6+WgHTegDaAhHQKrf+H2RJVd1fZQoaAZHQJgRMwudwvRoB03oA2gIR0Cq4KAdOqNqdX2UKGgGR0Cd9Y2ZRbbDaAdN6ANoCEdAque1MRHww3V9lChoBkdAm91A2uPmxWgHTegDaAhHQKrqV0+1Sfl1fZQoaAZHQJn3oNI9TxZoB03oA2gIR0Cq71rVnVXndX2UKGgGR0Cbbl9eyAx0aAdN6ANoCEdAqvAHJNj9XXV9lChoBkdAmCrhQ3xWk2gHTegDaAhHQKr12zeGfwt1fZQoaAZHQJlPWki2UjdoB03oA2gIR0Cq945lOGj9dX2UKGgGR0CcqwBnBciXaAdN6ANoCEdAqvt+AskIHHV9lChoBkdAm86xHG0eEWgHTegDaAhHQKr8Jv60pmV1fZQoaAZHQJs8GFnIyTJoB03oA2gIR0CrAi+A3DNydX2UKGgGR0CZbbKK508vaAdN6ANoCEdAqwSas+3YtnV9lChoBkdAlx63wCr922gHTegDaAhHQKsKkx6fJ3h1fZQoaAZHQJhNO7J4jbBoB03oA2gIR0CrC40x/NJOdX2UKGgGR0CZusYSxqwhaAdN6ANoCEdAqxFJj2BatHV9lChoBkdAg0wLzXjEN2gHTegDaAhHQKsTAPYFqzt1fZQoaAZHQJPsDUaya/hoB03oA2gIR0CrFvHGjsUqdX2UKGgGR0CYyS/R3NcGaAdN6ANoCEdAqxeWRT0g83V9lChoBkdAmZ8jG5tm+WgHTegDaAhHQKsdeA2AG0N1fZQoaAZHQJvAXarWAgBoB03oA2gIR0CrHzPfTCtSdX2UKGgGR0CbkDXGff4zaAdN6ANoCEdAqyTANPP9k3V9lChoBkdAl1Qq6vq1PWgHTegDaAhHQKslvhOP/711fZQoaAZHQJhXXIJZ4fRoB03oA2gIR0CrLPQ2l2vCdX2UKGgGR0CYdPyyD7IlaAdN6ANoCEdAqy6mzOX3QHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}