--- license: apache-2.0 base_model: microsoft/swin-base-patch4-window7-224 tags: - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: swin-base-patch4-window7-224-food101-16-7 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.928910891089109 --- # swin-base-patch4-window7-224-food101-16-7 This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.2478 - Accuracy: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8681 | 1.0 | 1183 | 0.4437 | 0.8731 | | 0.6919 | 2.0 | 2367 | 0.3323 | 0.9038 | | 0.4668 | 3.0 | 3551 | 0.2928 | 0.9158 | | 0.5488 | 4.0 | 4735 | 0.2752 | 0.9209 | | 0.4527 | 5.0 | 5918 | 0.2600 | 0.9255 | | 0.3692 | 6.0 | 7102 | 0.2519 | 0.9272 | | 0.3731 | 7.0 | 8281 | 0.2478 | 0.9289 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1