End of training
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: cc-by-sa-4.0
|
4 |
+
base_model: airesearch/wav2vec2-large-xlsr-53-th
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: wav2vec2-large-xlsr-53-th-speech-emotion-recognition
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# wav2vec2-large-xlsr-53-th-speech-emotion-recognition
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8209
|
22 |
+
- Accuracy: 0.6849
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 32
|
43 |
+
- eval_batch_size: 32
|
44 |
+
- seed: 42
|
45 |
+
- gradient_accumulation_steps: 4
|
46 |
+
- total_train_batch_size: 128
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- lr_scheduler_warmup_ratio: 0.1
|
50 |
+
- num_epochs: 10
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
55 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
56 |
+
| 1.4531 | 1.0 | 89 | 1.3187 | 0.4384 |
|
57 |
+
| 1.1932 | 2.0 | 178 | 1.1075 | 0.5416 |
|
58 |
+
| 0.984 | 3.0 | 267 | 0.9787 | 0.6024 |
|
59 |
+
| 0.9603 | 4.0 | 356 | 0.9281 | 0.6224 |
|
60 |
+
| 0.8789 | 5.0 | 445 | 0.9141 | 0.6361 |
|
61 |
+
| 0.9113 | 6.0 | 534 | 0.8611 | 0.6568 |
|
62 |
+
| 0.8453 | 7.0 | 623 | 0.8444 | 0.6656 |
|
63 |
+
| 0.7558 | 8.0 | 712 | 0.8257 | 0.6776 |
|
64 |
+
| 0.784 | 9.0 | 801 | 0.8341 | 0.6783 |
|
65 |
+
| 0.7566 | 10.0 | 890 | 0.8209 | 0.6849 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- Transformers 4.44.2
|
71 |
+
- Pytorch 2.4.1+cu121
|
72 |
+
- Datasets 3.0.1
|
73 |
+
- Tokenizers 0.19.1
|