--- library_name: transformers license: cc-by-sa-4.0 base_model: airesearch/wav2vec2-large-xlsr-53-th tags: - generated_from_trainer metrics: - accuracy model-index: - name: wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c results: [] --- # wav2vec2-large-xlsr-53-th-speech-emotion-recognition-3c This model is a fine-tuned version of [airesearch/wav2vec2-large-xlsr-53-th](https://huggingface.co/airesearch/wav2vec2-large-xlsr-53-th) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4445 - Accuracy: 0.8492 ## Model description three emotion [Anger , Happiness , Neutral] ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.0305 | 0.9956 | 57 | 1.0278 | 0.4874 | | 0.6947 | 1.9913 | 114 | 0.6649 | 0.6645 | | 0.622 | 2.9869 | 171 | 0.5644 | 0.7607 | | 0.5051 | 4.0 | 229 | 0.4936 | 0.7967 | | 0.4791 | 4.9956 | 286 | 0.4235 | 0.8328 | | 0.3918 | 5.9913 | 343 | 0.4273 | 0.8328 | | 0.3399 | 6.9869 | 400 | 0.4316 | 0.8437 | | 0.3473 | 8.0 | 458 | 0.4013 | 0.8448 | | 0.3276 | 8.9956 | 515 | 0.4140 | 0.8437 | | 0.3355 | 9.9913 | 572 | 0.4069 | 0.8459 | | 0.2958 | 10.9869 | 629 | 0.4440 | 0.8372 | | 0.2803 | 12.0 | 687 | 0.4381 | 0.8404 | | 0.2996 | 12.9956 | 744 | 0.4100 | 0.8492 | | 0.2995 | 13.9913 | 801 | 0.4310 | 0.8459 | | 0.2645 | 14.9869 | 858 | 0.4590 | 0.8393 | | 0.279 | 16.0 | 916 | 0.4317 | 0.8492 | | 0.249 | 16.9956 | 973 | 0.4564 | 0.8437 | | 0.238 | 17.9913 | 1030 | 0.4473 | 0.8459 | | 0.209 | 18.9869 | 1087 | 0.4428 | 0.8492 | | 0.2323 | 19.9127 | 1140 | 0.4445 | 0.8492 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1