--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy model-index: - name: Pak-Speech-Processing/urdu-emotion-whisper results: - task: name: Audio Classification type: audio-classification dataset: name: Pak-Speech-Processing/urdu-emotions type: audiofolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9166666666666666 --- # Pak-Speech-Processing/urdu-emotion-whisper This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Pak-Speech-Processing/urdu-emotions dataset. It achieves the following results on the evaluation set: - Loss: 0.5604 - Accuracy: 0.9167 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0018 | 1.0 | 120 | 2.0096 | 0.6667 | | 0.5139 | 2.0 | 240 | 0.8303 | 0.8667 | | 0.6903 | 3.0 | 360 | 0.8813 | 0.8833 | | 0.0006 | 4.0 | 480 | 0.3012 | 0.95 | | 1.5207 | 5.0 | 600 | 0.6310 | 0.8833 | | 0.0005 | 6.0 | 720 | 0.5993 | 0.9 | | 0.0004 | 7.0 | 840 | 0.3247 | 0.9167 | | 0.0001 | 8.0 | 960 | 0.5303 | 0.9167 | | 0.0001 | 9.0 | 1080 | 0.5530 | 0.9167 | | 0.0001 | 10.0 | 1200 | 0.5604 | 0.9167 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2