--- license: mit language: pt library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - transformers --- # Serafim 335m Portuguese (PT) Sentence Encoder tuned for Information Retrieval (IR) This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder-ir') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder-ir') model = AutoModel.from_pretrained('PORTULAN/serafim-335m-portuguese-pt-sentence-encoder-ir') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=PORTULAN/serafim-335m-portuguese-pt-sentence-encoder-ir) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 936019 with parameters: ``` {'batch_size': 85} ``` **Loss**: `sentence_transformers.losses.GISTEmbedLoss.GISTEmbedLoss` with parameters: ``` {'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ), 'temperature': 0.01} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 9361, "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator", "max_grad_norm": 1, "optimizer_class": "", "optimizer_params": { "lr": 1e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": 936019, "warmup_steps": 93602, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Citing & Authors The article has been presented at EPIA 2024 conference and published by Springer: @InProceedings{epia2024serafim, title={Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family}, author={Luís Gomes and António Branco and João Silva and João Rodrigues and Rodrigo Santos}, editor={Manuel Filipe Santos and José Machado and Paulo Novais and Paulo Cortez and Pedro Miguel Moreira}, booktitle={Progress in Artificial Intelligence}, doi={doi.org/10.1007/978-3-031-73503-5_22}, year={2024}, publisher={Springer Nature Switzerland}, address={Cham}, pages={267--279}, isbn={978-3-031-73503-5} } Before publication by Springer, the pre-print was available at arXiv: @misc{gomes2024opensentenceembeddingsportuguese, title={Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family}, author={Luís Gomes and António Branco and João Silva and João Rodrigues and Rodrigo Santos}, year={2024}, eprint={2407.19527}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2407.19527}, }