PK16514 commited on
Commit
d5b3033
·
1 Parent(s): 765b126

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -13
README.md CHANGED
@@ -1,20 +1,54 @@
1
  ---
2
- library_name: peft
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ## Training procedure
5
 
 
6
 
7
- The following `bitsandbytes` quantization config was used during training:
8
- - load_in_8bit: False
9
- - load_in_4bit: True
10
- - llm_int8_threshold: 6.0
11
- - llm_int8_skip_modules: None
12
- - llm_int8_enable_fp32_cpu_offload: False
13
- - llm_int8_has_fp16_weight: False
14
- - bnb_4bit_quant_type: nf4
15
- - bnb_4bit_use_double_quant: True
16
- - bnb_4bit_compute_dtype: float16
17
- ### Framework versions
 
18
 
19
 
20
- - PEFT 0.4.0
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - lex_glue
6
+ model-index:
7
+ - name: Llama-2-7b-hf-finetuned_2048
8
+ results: []
9
  ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Llama-2-7b-hf-finetuned_2048
15
+
16
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the lex_glue dataset.
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
  ## Training procedure
31
 
32
+ ### Training hyperparameters
33
 
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.0002
36
+ - train_batch_size: 4
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - gradient_accumulation_steps: 8
40
+ - total_train_batch_size: 32
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - training_steps: 10
44
+
45
+ ### Training results
46
 
47
 
48
+
49
+ ### Framework versions
50
+
51
+ - Transformers 4.30.2
52
+ - Pytorch 2.0.1+cu118
53
+ - Datasets 2.14.5
54
+ - Tokenizers 0.13.3