cardiffnlp
commited on
Commit
·
3f3ed66
1
Parent(s):
27ca1af
Adding tweeteval classifier
Browse files- README.md +83 -0
- config.json +37 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tf_model.h5 +3 -0
- vocab.json +0 -0
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: english
|
3 |
+
widget:
|
4 |
+
- text: "Covid cases are increasing fast!"
|
5 |
+
- text: "🤗"
|
6 |
+
- text: "I hate you 🤮"
|
7 |
+
---
|
8 |
+
|
9 |
+
|
10 |
+
# Twitter-roBERTa-base for Sentiment Analysis
|
11 |
+
|
12 |
+
This is a roBERTa-base model trained on ~200M tweets and finetuned for sentiment analysis with the TweetEval benchmark. This model is suitable for English.
|
13 |
+
|
14 |
+
- Reference Paper: [_TweetEval_ (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf).
|
15 |
+
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval).
|
16 |
+
|
17 |
+
<b>Labels</b>:
|
18 |
+
0 -> Negative;
|
19 |
+
1 -> Neutral;
|
20 |
+
2 -> Positive
|
21 |
+
|
22 |
+
## Example Pipeline
|
23 |
+
```python
|
24 |
+
from transformers import pipeline
|
25 |
+
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
|
26 |
+
sentiment_task("Covid cases are increasing fast!")
|
27 |
+
```
|
28 |
+
```
|
29 |
+
[{'label': 'Negative', 'score': 0.7236}]
|
30 |
+
```
|
31 |
+
|
32 |
+
## Full classification example
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoModelForSequenceClassification
|
36 |
+
from transformers import TFAutoModelForSequenceClassification
|
37 |
+
from transformers import AutoTokenizer, AutoConfig
|
38 |
+
import numpy as np
|
39 |
+
from scipy.special import softmax
|
40 |
+
# Preprocess text (username and link placeholders)
|
41 |
+
def preprocess(text):
|
42 |
+
new_text = []
|
43 |
+
for t in text.split(" "):
|
44 |
+
t = '@user' if t.startswith('@') and len(t) > 1 else t
|
45 |
+
t = 'http' if t.startswith('http') else t
|
46 |
+
new_text.append(t)
|
47 |
+
return " ".join(new_text)
|
48 |
+
MODEL = f"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
49 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
50 |
+
config = AutoConfig.from_pretrained(MODEL)
|
51 |
+
# PT
|
52 |
+
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
|
53 |
+
#model.save_pretrained(MODEL)
|
54 |
+
text = "Covid cases are increasing fast!"
|
55 |
+
text = preprocess(text)
|
56 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
57 |
+
output = model(**encoded_input)
|
58 |
+
scores = output[0][0].detach().numpy()
|
59 |
+
scores = softmax(scores)
|
60 |
+
# # TF
|
61 |
+
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
|
62 |
+
# model.save_pretrained(MODEL)
|
63 |
+
# text = "Covid cases are increasing fast!"
|
64 |
+
# encoded_input = tokenizer(text, return_tensors='tf')
|
65 |
+
# output = model(encoded_input)
|
66 |
+
# scores = output[0][0].numpy()
|
67 |
+
# scores = softmax(scores)
|
68 |
+
# Print labels and scores
|
69 |
+
ranking = np.argsort(scores)
|
70 |
+
ranking = ranking[::-1]
|
71 |
+
for i in range(scores.shape[0]):
|
72 |
+
l = config.id2label[ranking[i]]
|
73 |
+
s = scores[ranking[i]]
|
74 |
+
print(f"{i+1}) {l} {np.round(float(s), 4)}")
|
75 |
+
```
|
76 |
+
|
77 |
+
Output:
|
78 |
+
|
79 |
+
```
|
80 |
+
1) Negative 0.7236
|
81 |
+
2) Neutral 0.2287
|
82 |
+
3) Positive 0.0477
|
83 |
+
```
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/jupyter/misc/tweeteval/TweetEval_models/sentiment/sentiment_latest_2021/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"id2label": {
|
15 |
+
"0": "Negative",
|
16 |
+
"1": "Neutral",
|
17 |
+
"2": "Positive"
|
18 |
+
},
|
19 |
+
"initializer_range": 0.02,
|
20 |
+
"intermediate_size": 3072,
|
21 |
+
"label2id": {
|
22 |
+
"Negative": 0,
|
23 |
+
"Neutral": 1,
|
24 |
+
"Positive": 2
|
25 |
+
},
|
26 |
+
"layer_norm_eps": 1e-05,
|
27 |
+
"max_position_embeddings": 514,
|
28 |
+
"model_type": "roberta",
|
29 |
+
"num_attention_heads": 12,
|
30 |
+
"num_hidden_layers": 12,
|
31 |
+
"pad_token_id": 1,
|
32 |
+
"position_embedding_type": "absolute",
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.13.0.dev0",
|
35 |
+
"type_vocab_size": 1,
|
36 |
+
"vocab_size": 50265
|
37 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d24a3e32a88ed1c4e5b789fc6644e2e767500554e954b27dccf52a8e762cbae
|
3 |
+
size 501045531
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
|
tf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:682358ffb3869b08a144d5e59325534335729720fe64d5f2b3a543f8e5d14a9e
|
3 |
+
size 498845224
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|