--- tags: - grammar - spelling - punctuation - error-correction datasets: - jfleg widget: - text: i can has cheezburger example_title: cheezburger - text: There car broke down so their hitching a ride to they're class. example_title: compound-1 - text: >- so em if we have an now so with fito ringina know how to estimate the tren given the ereafte mylite trend we can also em an estimate is nod s i again tort watfettering an we have estimated the trend an called wot to be called sthat of exty right now we can and look at wy this should not hare a trend i becan we just remove the trend an and we can we now estimate tesees ona effect of them exty example_title: Transcribed Audio Example 2 - text: >- My coworker said he used a financial planner to help choose his stocks so he wouldn't loose money. example_title: incorrect word choice (context) - text: >- good so hve on an tadley i'm not able to make it to the exla session on monday this week e which is why i am e recording pre recording an this excelleision and so to day i want e to talk about two things and first of all em i wont em wene give a summary er about ta ohow to remove trents in these nalitives from time series example_title: lowercased audio transcription output - text: Frustrated, the chairs took me forever to set up. example_title: dangling modifier - text: I would like a peice of pie. example_title: miss-spelling - text: >- Which part of Zurich was you going to go hiking in when we were there for the first time together? ! ? example_title: chatbot on Zurich parameters: max_length: 128 min_length: 4 num_beams: 4 repetition_penalty: 1.21 length_penalty: 1 early_stopping: true --- ## Training and evaluation data - trained as text-to-text - JFLEG dataset + additional selected and/or generated grammar corrections ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6