File size: 121,691 Bytes
d4f61a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
# Efficiency Nodes - A collection of my ComfyUI custom nodes to help streamline workflows and reduce total node count.
#  by Luciano Cirino (Discord: TSC#9184) - April 2023

from comfy.sd import ModelPatcher, CLIP, VAE
from nodes import common_ksampler, CLIPSetLastLayer

from torch import Tensor
from PIL import Image, ImageOps, ImageDraw, ImageFont
from PIL.PngImagePlugin import PngInfo
import numpy as np
import torch

import ast
from pathlib import Path
import os
import sys
import subprocess
import json
import folder_paths
import psutil

# Get the absolute path of the parent directory of the current script
my_dir = os.path.dirname(os.path.abspath(__file__))

# Add the My directory path to the sys.path list
sys.path.append(my_dir)

# Construct the absolute path to the ComfyUI directory
comfy_dir = os.path.abspath(os.path.join(my_dir, '..', '..'))

# Add the ComfyUI directory path to the sys.path list
sys.path.append(comfy_dir)

# Construct the path to the font file
font_path = os.path.join(my_dir, 'arial.ttf')

# Import functions from ComfyUI
import comfy.samplers
import comfy.sd
import comfy.utils

# Import my util functions
from tsc_utils import *

MAX_RESOLUTION=8192

########################################################################################################################
# TSC Efficient Loader
class TSC_EfficientLoader:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
                              "vae_name": (["Baked VAE"] + folder_paths.get_filename_list("vae"),),
                              "clip_skip": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              "lora_name": (["None"] + folder_paths.get_filename_list("loras"),),
                              "lora_model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "lora_clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "positive": ("STRING", {"default": "Positive","multiline": True}),
                              "negative": ("STRING", {"default": "Negative", "multiline": True}),
                              "empty_latent_width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "empty_latent_height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})},
                "optional": {"lora_stack": ("LORA_STACK", )},
                "hidden": { "prompt": "PROMPT",
                            "my_unique_id": "UNIQUE_ID",},
                }

    RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "DEPENDENCIES",)
    RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "CLIP", "DEPENDENCIES", )
    FUNCTION = "efficientloader"
    CATEGORY = "Efficiency Nodes/Loaders"

    def efficientloader(self, ckpt_name, vae_name, clip_skip, lora_name, lora_model_strength, lora_clip_strength,
                        positive, negative, empty_latent_width, empty_latent_height, batch_size, lora_stack=None,
                        prompt=None, my_unique_id=None):

        model: ModelPatcher | None = None
        clip: CLIP | None = None
        vae: VAE | None = None

        # Create Empty Latent
        latent = torch.zeros([batch_size, 4, empty_latent_height // 8, empty_latent_width // 8]).cpu()

        # Clean globally stored objects
        globals_cleanup(prompt)

        # Retrieve cache numbers
        vae_cache, ckpt_cache, lora_cache = get_cache_numbers("Efficient Loader")

        if lora_name != "None":
            lora_params = [(lora_name, lora_model_strength, lora_clip_strength)]
            if lora_stack is not None:
                lora_params.extend(lora_stack)
            model, clip = load_lora(lora_params, ckpt_name, my_unique_id, cache=lora_cache, ckpt_cache=ckpt_cache, cache_overwrite=True)
            if vae_name == "Baked VAE":
                vae = get_bvae_by_ckpt_name(ckpt_name)
        else:
            model, clip, vae = load_checkpoint(ckpt_name, my_unique_id, cache=ckpt_cache, cache_overwrite=True)
            lora_params = None

        # Check for custom VAE
        if vae_name != "Baked VAE":
            vae = load_vae(vae_name, my_unique_id, cache=vae_cache, cache_overwrite=True)

        # Debugging
        ###print_loaded_objects_entries()

        # CLIP skip
        if not clip:
            raise Exception("No CLIP found")
        clip = clip.clone()
        clip.clip_layer(clip_skip)

        # Data for XY Plot
        dependencies = (vae_name, ckpt_name, clip, clip_skip, positive, negative, lora_params)

        return (model, [[clip.encode(positive), {}]], [[clip.encode(negative), {}]], {"samples":latent}, vae, clip, dependencies, )

########################################################################################################################
# TSC LoRA Stacker
class TSC_LoRA_Stacker:

    loras = ["None"] + folder_paths.get_filename_list("loras")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "lora_name_1": (cls.loras,),
            "lora_wt_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "lora_name_2": (cls.loras,),
            "lora_wt_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "lora_name_3": (cls.loras,),
            "lora_wt_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})},
            "optional": {"lora_stack": ("LORA_STACK",)},
        }

    RETURN_TYPES = ("LORA_STACK",)
    RETURN_NAMES = ("LORA_STACK",)
    FUNCTION = "lora_stacker"
    CATEGORY = "Efficiency Nodes/Misc"

    def lora_stacker(self, lora_name_1, lora_wt_1, lora_name_2, lora_wt_2, lora_name_3, lora_wt_3, lora_stack=None):
        # Create a list of tuples using provided parameters, exclude tuples with lora_name as "None"
        loras = [(lora_name, lora_wt, lora_wt) for lora_name, lora_wt, lora_wt in
                 [(lora_name_1, lora_wt_1, lora_wt_1),
                  (lora_name_2, lora_wt_2, lora_wt_2),
                  (lora_name_3, lora_wt_3, lora_wt_3)]
                 if lora_name != "None"]

        # If lora_stack is not None, extend the loras list with lora_stack
        if lora_stack is not None:
            loras.extend([l for l in lora_stack if l[0] != "None"])

        return (loras,)

# TSC LoRA Stacker Advanced
class TSC_LoRA_Stacker_Adv:

    loras = ["None"] + folder_paths.get_filename_list("loras")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "lora_name_1": (cls.loras,),
            "model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "lora_name_2": (cls.loras,),
            "model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "lora_name_3": (cls.loras,),
            "model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
            "clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})},
            "optional": {"lora_stack": ("LORA_STACK",)},
        }

    RETURN_TYPES = ("LORA_STACK",)
    RETURN_NAMES = ("LORA_STACK",)
    FUNCTION = "lora_stacker"
    CATEGORY = "Efficiency Nodes/Misc"

    def lora_stacker(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2,
                     lora_name_3, model_str_3, clip_str_3, lora_stack=None):
        # Create a list of tuples using provided parameters, exclude tuples with lora_name as "None"
        loras = [(lora_name, model_str, clip_str) for lora_name, model_str, clip_str in
                 [(lora_name_1, model_str_1, clip_str_1),
                  (lora_name_2, model_str_2, clip_str_2),
                  (lora_name_3, model_str_3, clip_str_3)]
                 if lora_name != "None"]

        # If lora_stack is not None, extend the loras list with lora_stack
        if lora_stack is not None:
            loras.extend([l for l in lora_stack if l[0] != "None"])

        return (loras,)

########################################################################################################################
# TSC KSampler (Efficient)
class TSC_KSampler:
    
    empty_image = pil2tensor(Image.new('RGBA', (1, 1), (0, 0, 0, 0)))

    def __init__(self):
        self.output_dir = os.path.join(comfy_dir, 'temp')
        self.type = "temp"

    @classmethod
    def INPUT_TYPES(cls):
        return {"required":
                    {"sampler_state": (["Sample", "Hold", "Script"], ),
                     "model": ("MODEL",),
                     "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                     "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                     "cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
                     "sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
                     "scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
                     "positive": ("CONDITIONING",),
                     "negative": ("CONDITIONING",),
                     "latent_image": ("LATENT",),
                     "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
                     "preview_image": (["Disabled", "Enabled", "Output Only"],),
                     },
                "optional": { "optional_vae": ("VAE",),
                              "script": ("SCRIPT",),},
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "my_unique_id": "UNIQUE_ID",},
                }

    RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "IMAGE", )
    RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "IMAGE", )
    OUTPUT_NODE = True
    FUNCTION = "sample"
    CATEGORY = "Efficiency Nodes/Sampling"
    
    def sample(self, sampler_state, model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
               latent_image, preview_image, denoise=1.0, prompt=None, extra_pnginfo=None, my_unique_id=None,
               optional_vae=(None,), script=None):

        # Extract node_settings from json
        def get_settings():
            # Get the directory path of the current file
            my_dir = os.path.dirname(os.path.abspath(__file__))
            # Construct the file path for node_settings.json
            settings_file = os.path.join(my_dir, 'node_settings.json')
            # Load the settings from the JSON file
            with open(settings_file, 'r') as file:
                node_settings = json.load(file)
            # Retrieve the settings
            kse_vae_tiled = node_settings.get("KSampler (Efficient)", {}).get('vae_tiled', False)
            xy_vae_tiled = node_settings.get("XY Plot", {}).get('vae_tiled', False)
            return kse_vae_tiled, xy_vae_tiled

        kse_vae_tiled, xy_vae_tiled = get_settings()

        # Functions for previewing images in Ksampler
        def map_filename(filename):
            prefix_len = len(os.path.basename(filename_prefix))
            prefix = filename[:prefix_len + 1]
            try:
                digits = int(filename[prefix_len + 1:].split('_')[0])
            except:
                digits = 0
            return (digits, prefix)

        def compute_vars(input):
            input = input.replace("%width%", str(images[0].shape[1]))
            input = input.replace("%height%", str(images[0].shape[0]))
            return input

        def preview_images(images, filename_prefix):
            filename_prefix = compute_vars(filename_prefix)

            subfolder = os.path.dirname(os.path.normpath(filename_prefix))
            filename = os.path.basename(os.path.normpath(filename_prefix))

            full_output_folder = os.path.join(self.output_dir, subfolder)

            try:
                counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_",
                                     map(map_filename, os.listdir(full_output_folder))))[0] + 1
            except ValueError:
                counter = 1
            except FileNotFoundError:
                os.makedirs(full_output_folder, exist_ok=True)
                counter = 1

            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)

            results = list()
            for image in images:
                i = 255. * image.cpu().numpy()
                img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
                metadata = PngInfo()
                if prompt is not None:
                    metadata.add_text("prompt", json.dumps(prompt))
                if extra_pnginfo is not None:
                    for x in extra_pnginfo:
                        metadata.add_text(x, json.dumps(extra_pnginfo[x]))
                file = f"{filename}_{counter:05}_.png"
                img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
                results.append({
                    "filename": file,
                    "subfolder": subfolder,
                    "type": self.type
                });
                counter += 1
            return results

        def get_value_by_id(key: str, my_unique_id):
            global last_helds
            for value, id_ in last_helds[key]:
                if id_ == my_unique_id:
                    return value
            return None

        def update_value_by_id(key: str, my_unique_id, new_value):
            global last_helds

            for i, (value, id_) in enumerate(last_helds[key]):
                if id_ == my_unique_id:
                    last_helds[key][i] = (new_value, id_)
                    return True

            last_helds[key].append((new_value, my_unique_id))
            return True

        # Clean globally stored objects of non-existant nodes
        globals_cleanup(prompt)

        # Convert ID string to an integer
        my_unique_id = int(my_unique_id)

        # Vae input check
        vae = optional_vae
        if vae == (None,):
            print('\033[33mKSampler(Efficient) Warning:\033[0m No vae input detected, preview and output image disabled.\n')
            preview_image = "Disabled"

        # Init last_results
        if get_value_by_id("results", my_unique_id) is None:
            last_results = list()
        else:
            last_results = get_value_by_id("results", my_unique_id)

        # Init last_latent
        if get_value_by_id("latent", my_unique_id) is None:
            last_latent = latent_image
        else:
            last_latent = {"samples": None}
            last_latent["samples"] = get_value_by_id("latent", my_unique_id)

        # Init last_images
        if get_value_by_id("images", my_unique_id) == None:
            last_images = TSC_KSampler.empty_image
        else:
            last_images = get_value_by_id("images", my_unique_id)

        # Initialize latent
        latent: Tensor|None = None

        # Define filename_prefix
        filename_prefix = "KSeff_{:02d}".format(my_unique_id)

        # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # Check the current sampler state
        if sampler_state == "Sample":

            # Sample using the common KSampler function and store the samples
            samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
                                      latent_image, denoise=denoise)

            # Extract the latent samples from the returned samples dictionary
            latent = samples[0]["samples"]

            # Store the latent samples in the 'last_helds' dictionary with a unique ID
            update_value_by_id("latent", my_unique_id, latent)

            # If not in preview mode, return the results in the specified format
            if preview_image == "Disabled":
                # Enable vae decode on next Hold
                update_value_by_id("vae_decode", my_unique_id, True)
                return {"ui": {"images": list()},
                        "result": (model, positive, negative, {"samples": latent}, vae, TSC_KSampler.empty_image,)}
            else:
                # Decode images and store
                if kse_vae_tiled == False:
                    images = vae.decode(latent).cpu()
                else:
                    images = vae.decode_tiled(latent).cpu()
                update_value_by_id("images", my_unique_id, images)

                # Disable vae decode on next Hold
                update_value_by_id("vae_decode", my_unique_id, False)

                # Generate image results and store
                results = preview_images(images, filename_prefix)
                update_value_by_id("results", my_unique_id, results)

                # Determine what the 'images' value should be
                images_value = list() if preview_image == "Output Only" else results

                # Output image results to ui and node outputs
                return {"ui": {"images": images_value},
                        "result": (model, positive, negative, {"samples": latent}, vae, images,)}


        # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        # If the sampler state is "Hold"
        elif sampler_state == "Hold":

            # If not in preview mode, return the results in the specified format
            if preview_image == "Disabled":
                return {"ui": {"images": list()},
                        "result": (model, positive, negative, last_latent, vae, TSC_KSampler.empty_image,)}

            else:
                latent = last_latent["samples"]

                if get_value_by_id("vae_decode", my_unique_id) == True:

                    # Decode images and store
                    if kse_vae_tiled == False:
                        images = vae.decode(latent).cpu()
                    else:
                        images = vae.decode_tiled(latent).cpu()
                    update_value_by_id("images", my_unique_id, images)

                    # Disable vae decode on next Hold
                    update_value_by_id("vae_decode", my_unique_id, False)

                    # Generate image results and store
                    results = preview_images(images, filename_prefix)
                    update_value_by_id("results", my_unique_id, results)

                else:
                    images = last_images
                    results = last_results

                # Determine what the 'images' value should be
                images_value = list() if preview_image == "Output Only" else results

                # Output image results to ui and node outputs
                return {"ui": {"images": images_value},
                        "result": (model, positive, negative, {"samples": latent}, vae, images,)}

        # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
        elif sampler_state == "Script":

            # Store name of connected node to script input
            script_node_name, script_node_id = extract_node_info(prompt, my_unique_id, 'script')

            # If no valid script input connected, error out
            if script == None or script == (None,) or script_node_name!="XY Plot":
                if script_node_name!="XY Plot":
                    print('\033[31mKSampler(Efficient) Error:\033[0m No valid script input detected')
                return {"ui": {"images": list()},
                        "result": (model, positive, negative, last_latent, vae, last_images,)}

            # If no vae connected, throw errors
            if vae == (None,):
                print('\033[31mKSampler(Efficient) Error:\033[0m VAE must be connected to use Script mode.')
                return {"ui": {"images": list()},
                        "result": (model, positive, negative, last_latent, vae, last_images,)}

            # If preview_image set to disabled, run script anyways with message
            if preview_image == "Disabled":
                print('\033[33mKSampler(Efficient) Warning:\033[0m The preview image cannot be disabled when running'
                      ' the XY Plot script, proceeding as if it was enabled.\n')

            # Extract the 'samples' tensor and split it into individual image tensors
            image_tensors = torch.split(latent_image['samples'], 1, dim=0)

            # Get the shape of the first image tensor
            shape = image_tensors[0].shape

            # Extract the original height and width
            latent_height, latent_width = shape[2] * 8, shape[3] * 8

            # Set latent only to the first latent of batch
            latent_image = {'samples': image_tensors[0]}

            #___________________________________________________________________________________________________________
            # Initialize, unpack, and clean variables for the XY Plot script
            if script_node_name == "XY Plot":

                # Initialize variables
                vae_name = None
                ckpt_name = None
                clip = None
                lora_params = None
                positive_prompt = None
                negative_prompt = None
                clip_skip = None

                # Unpack script Tuple (X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, dependencies)
                X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models, xyplot_as_output_image,\
                    flip_xy, dependencies = script

                # Unpack Effficient Loader dependencies
                if dependencies is not None:
                    vae_name, ckpt_name, clip, clip_skip, positive_prompt, negative_prompt, lora_params = dependencies

                # Helper function to process printout values
                def process_xy_for_print(value, replacement, type_):
                    if isinstance(value, tuple) and type_ == "Scheduler":
                        return value[0]  # Return only the first entry of the tuple
                    elif isinstance(value, tuple):
                        return tuple(replacement if v is None else v for v in value)
                    else:
                        return replacement if value is None else value

                # Determine the replacements based on X_type and Y_type
                replacement_X = scheduler if X_type == 'Sampler' else clip_skip if X_type == 'Checkpoint' else None
                replacement_Y = scheduler if Y_type == 'Sampler' else clip_skip if Y_type == 'Checkpoint' else None

                # Process X_value and Y_value
                X_value_processed = [process_xy_for_print(v, replacement_X, X_type) for v in X_value]
                Y_value_processed = [process_xy_for_print(v, replacement_Y, Y_type) for v in Y_value]

                # Print XY Plot Inputs
                print("-" * 40)
                print("XY Plot Script Inputs:")
                print(f"(X) {X_type}: {X_value_processed}")
                print(f"(Y) {Y_type}: {Y_value_processed}")
                print("-" * 40)

                # If not caching models, set to 1.
                if cache_models == "False":
                    vae_cache = ckpt_cache = lora_cache = 1
                else:
                    # Retrieve cache numbers
                    vae_cache, ckpt_cache, lora_cache = get_cache_numbers("XY Plot")
                # Pack cache numbers in a tuple
                cache = (vae_cache, ckpt_cache, lora_cache)

                # Embedd original prompts into prompt variables
                positive_prompt = (positive_prompt, positive_prompt)
                negative_prompt = (negative_prompt, negative_prompt)

                #_______________________________________________________________________________________________________
                #The below code will clean from the cache any ckpt/vae/lora models it will not be reusing.

                # Map the type names to the dictionaries
                dict_map = {"VAE": [], "Checkpoint": [], "LoRA": []}

                # Create a list of tuples with types and values
                type_value_pairs = [(X_type, X_value), (Y_type, Y_value)]

                # Iterate over type-value pairs
                for t, v in type_value_pairs:
                    if t in dict_map:
                        # Flatten the list of lists of tuples if the type is "LoRA"
                        if t == "LoRA":
                            dict_map[t] = [item for sublist in v for item in sublist]
                        else:
                            dict_map[t] = v

                ckpt_dict = [t[0] for t in dict_map.get("Checkpoint", [])] if dict_map.get("Checkpoint", []) else []

                lora_dict = [[t,] for t in dict_map.get("LoRA", [])] if dict_map.get("LoRA", []) else []

                # If both ckpt_dict and lora_dict are not empty, manipulate lora_dict as described
                if ckpt_dict and lora_dict:
                    lora_dict = [(lora_params, ckpt) for ckpt in ckpt_dict for lora_params in lora_dict]
                # If lora_dict is not empty and ckpt_dict is empty, insert ckpt_name into each tuple in lora_dict
                elif lora_dict:
                    lora_dict = [(lora_params, ckpt_name) for lora_params in lora_dict]

                vae_dict = dict_map.get("VAE", [])

                # prioritize Caching Checkpoints over LoRAs but not both.
                if X_type == "LoRA":
                    ckpt_dict = []
                if X_type == "Checkpoint":
                    lora_dict = []

                # Print dict_arrays for debugging
                ###print(f"vae_dict={vae_dict}\nckpt_dict={ckpt_dict}\nlora_dict={lora_dict}")

                # Clean values that won't be reused
                clear_cache_by_exception(script_node_id, vae_dict=vae_dict, ckpt_dict=ckpt_dict, lora_dict=lora_dict)

                # Print loaded_objects for debugging
                ###print_loaded_objects_entries()

                #_______________________________________________________________________________________________________
                # Function that changes appropiate variables for next processed generations (also generates XY_labels)
                def define_variable(var_type, var, seed, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
                                    clip_skip, positive_prompt, negative_prompt, lora_params, var_label, num_label):

                    # Define default max label size limit
                    max_label_len = 36

                    # If var_type is "Seeds++ Batch", update var and seed, and generate labels
                    if var_type == "Seeds++ Batch":
                        text = f"Seed: {seed}"

                    # If var_type is "Steps", update steps and generate labels
                    elif var_type == "Steps":
                        steps = var
                        text = f"steps: {steps}"

                    # If var_type is "CFG Scale", update cfg and generate labels
                    elif var_type == "CFG Scale":
                        cfg = var
                        text = f"CFG: {round(cfg,2)}"

                    # If var_type is "Sampler", update sampler_name, scheduler, and generate labels
                    elif var_type == "Sampler":
                        sampler_name = var[0]
                        if var[1] == "":
                            text = f"{sampler_name}"
                        else:
                            if var[1] != None:
                                scheduler = (var[1], scheduler[1])
                            else:
                                scheduler = (scheduler[1], scheduler[1])
                            text = f"{sampler_name} ({scheduler[0]})"
                        text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp")

                    # If var_type is "Scheduler", update scheduler and generate labels
                    elif var_type == "Scheduler":
                        if len(var) == 2:
                            scheduler = (var[0], scheduler[1])
                            text = f"{sampler_name} ({scheduler[0]})"
                        else:
                            scheduler = (var, scheduler[1])
                            text = f"{scheduler[0]}"
                        text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp")

                    # If var_type is "Denoise", update denoise and generate labels
                    elif var_type == "Denoise":
                        denoise = var
                        text = f"denoise: {round(denoise, 2)}"

                    # If var_type is "VAE", update vae_name and generate labels
                    elif var_type == "VAE":
                        vae_name = var
                        vae_filename = os.path.splitext(os.path.basename(vae_name))[0]
                        text = f"VAE: {vae_filename}"

                    # If var_type is "Positive Prompt S/R", update positive_prompt and generate labels
                    elif var_type == "Positive Prompt S/R":
                        search_txt, replace_txt = var
                        if replace_txt != None:
                            positive_prompt = (positive_prompt[1].replace(search_txt, replace_txt, 1), positive_prompt[1])
                        else:
                            positive_prompt = (positive_prompt[1], positive_prompt[1])
                            replace_txt = search_txt
                        text = f"{replace_txt}"

                    # If var_type is "Negative Prompt S/R", update negative_prompt and generate labels
                    elif var_type == "Negative Prompt S/R":
                        search_txt, replace_txt = var
                        if replace_txt:
                            negative_prompt = (negative_prompt[1].replace(search_txt, replace_txt, 1), negative_prompt[1])
                        else:
                            negative_prompt = (negative_prompt[1], negative_prompt[1])
                            replace_txt = search_txt
                        text = f"(-) {replace_txt}"

                    # If var_type is "Checkpoint", update model and clip (if needed) and generate labels
                    elif var_type == "Checkpoint":
                        ckpt_name = var[0]
                        if var[1] == None:
                            clip_skip = (clip_skip[1],clip_skip[1])
                        else:
                            clip_skip = (var[1],clip_skip[1])
                        ckpt_filename = os.path.splitext(os.path.basename(ckpt_name))[0]
                        text = f"{ckpt_filename}"

                    elif var_type == "Clip Skip":
                        clip_skip = (var, clip_skip[1])
                        text = f"Clip Skip ({clip_skip[0]})"

                    elif var_type == "LoRA":
                        lora_params = var
                        max_label_len = 30 + (12 * (len(lora_params)-1))
                        if len(lora_params) == 1:
                            lora_name, lora_model_wt, lora_clip_wt = lora_params[0]
                            lora_filename = os.path.splitext(os.path.basename(lora_name))[0]
                            lora_model_wt = format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.')
                            lora_clip_wt = format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.')
                            lora_filename = lora_filename[:max_label_len - len(f"LoRA: ({lora_model_wt})")]
                            if lora_model_wt == lora_clip_wt:
                                text = f"LoRA: {lora_filename}({lora_model_wt})"
                            else:
                                text = f"LoRA: {lora_filename}({lora_model_wt},{lora_clip_wt})"
                        elif len(lora_params) > 1:
                            lora_filenames = [os.path.splitext(os.path.basename(lora_name))[0] for lora_name, _, _ in lora_params]
                            lora_details = [(format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.'),
                                             format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.')) for _, lora_model_wt, lora_clip_wt in lora_params]
                            non_name_length = sum(len(f"({lora_details[i][0]},{lora_details[i][1]})") + 2 for i in range(len(lora_params)))
                            available_space = max_label_len - non_name_length
                            max_name_length = available_space // len(lora_params)
                            lora_filenames = [filename[:max_name_length] for filename in lora_filenames]
                            text_elements = [f"{lora_filename}({lora_details[i][0]})" if lora_details[i][0] == lora_details[i][1] else f"{lora_filename}({lora_details[i][0]},{lora_details[i][1]})" for i, lora_filename in enumerate(lora_filenames)]
                            text = " ".join(text_elements)

                    def truncate_texts(texts, num_label, max_label_len):
                        truncate_length = max(min(max(len(text) for text in texts), max_label_len), 24)

                        return [text if len(text) <= truncate_length else text[:truncate_length] + "..." for text in
                                texts]

                    # Add the generated text to var_label if it's not full
                    if len(var_label) < num_label:
                        var_label.append(text)

                    # If var_type VAE , truncate entries in the var_label list when it's full
                    if len(var_label) == num_label and (var_type == "VAE" or var_type == "Checkpoint" or var_type == "LoRA"):
                        var_label = truncate_texts(var_label, num_label, max_label_len)

                    # Return the modified variables
                    return steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, \
                        positive_prompt, negative_prompt, lora_params, var_label

                # _______________________________________________________________________________________________________
                # The function below is used to smartly load Checkpoint/LoRA/VAE models between generations.
                def define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip, vae,
                                 vae_name, ckpt_name, lora_params, index, types, script_node_id, cache):
        
                    # Encode prompt and apply clip_skip. Return new conditioning.
                    def encode_prompt(positive_prompt, negative_prompt, clip, clip_skip):
                        clip = CLIPSetLastLayer().set_last_layer(clip, clip_skip)[0]
                        return [[clip.encode(positive_prompt), {}]], [[clip.encode(negative_prompt), {}]]

                    # Variable to track wether to encode prompt or not
                    encode = False

                    # Unpack types tuple
                    X_type, Y_type = types

                    # Note: Index is held at 0 when Y_type == "Nothing"

                    # Load VAE if required
                    if (X_type == "VAE" and index == 0) or Y_type == "VAE":
                        vae = load_vae(vae_name, script_node_id, cache=cache[0])

                    # Load Checkpoint if required. If Y_type is LoRA, required models will be loaded by load_lora func.
                    if (X_type == "Checkpoint" and index == 0 and Y_type != "LoRA"):
                        if lora_params is None:
                            model, clip, _ = load_checkpoint(ckpt_name, script_node_id, output_vae=False, cache=cache[1])
                        else: # Load Efficient Loader LoRA
                            model, clip = load_lora(lora_params, ckpt_name, script_node_id,
                                                    cache=None, ckpt_cache=cache[1])
                        encode = True

                    # Load LoRA if required
                    elif (X_type == "LoRA" and index == 0):
                        # Don't cache Checkpoints
                        model, clip = load_lora(lora_params, ckpt_name, script_node_id, cache=cache[2])
                        encode = True
                        
                    elif Y_type == "LoRA":  # X_type must be Checkpoint, so cache those as defined
                        model, clip = load_lora(lora_params, ckpt_name, script_node_id,
                                                cache=None, ckpt_cache=cache[1])
                        encode = True

                    # Encode Prompt if required
                    prompt_types = ["Positive Prompt S/R", "Negative Prompt S/R", "Clip Skip"]
                    if (X_type in prompt_types and index == 0) or Y_type in prompt_types:
                        encode = True

                    # Encode prompt if needed
                    if encode == True:
                        positive, negative = encode_prompt(positive_prompt[0], negative_prompt[0], clip, clip_skip)
                        
                    return model, positive, negative, vae

                # ______________________________________________________________________________________________________
                # The below function is used to generate the results based on all the processed variables
                def process_values(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                   denoise, vae, latent_list=[], image_tensor_list=[], image_pil_list=[]):

                    # Sample
                    samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
                                              latent_image, denoise=denoise)

                    # Decode images and store
                    latent = samples[0]["samples"]

                    # Add the latent tensor to the tensors list
                    latent_list.append(latent)

                    # Decode the latent tensor
                    if xy_vae_tiled == False:
                        image = vae.decode(latent).cpu()
                    else:
                        image = vae.decode_tiled(latent).cpu()

                    # Add the resulting image tensor to image_tensor_list
                    image_tensor_list.append(image)

                    # Convert the image from tensor to PIL Image and add it to the image_pil_list
                    image_pil_list.append(tensor2pil(image))

                    # Return the touched variables
                    return latent_list, image_tensor_list, image_pil_list

                # ______________________________________________________________________________________________________
                # The below section is the heart of the XY Plot image generation

                 # Initiate Plot label text variables X/Y_label
                X_label = []
                Y_label = []

                # Seed_updated for "Seeds++ Batch" incremental seeds
                seed_updated = seed

                # Store the KSamplers original scheduler inside the same scheduler variable
                scheduler = (scheduler, scheduler)

                # Store the Eff Loaders original clip_skip inside the same clip_skip variable
                clip_skip = (clip_skip, clip_skip)

                # Store types in a Tuple for easy function passing
                types = (X_type, Y_type)

                # Fill Plot Rows (X)
                for X_index, X in enumerate(X_value):

                    # Seed control based on loop index during Batch
                    if X_type == "Seeds++ Batch":
                        # Update seed based on the inner loop index
                        seed_updated = seed + X_index

                    # Define X parameters and generate labels
                    steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, \
                        lora_params, X_label = \
                        define_variable(X_type, X, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
                                        clip_skip, positive_prompt, negative_prompt, lora_params, X_label, len(X_value))

                    if X_type != "Nothing" and Y_type == "Nothing":

                        # Models & Conditionings
                        model, positive, negative , vae = \
                            define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae,
                                         vae_name, ckpt_name, lora_params, 0, types, script_node_id, cache)

                        # Generate Results
                        latent_list, image_tensor_list, image_pil_list = \
                            process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0],
                                           positive, negative, latent_image, denoise, vae)

                    elif X_type != "Nothing" and Y_type != "Nothing":
                        # Seed control based on loop index during Batch
                        for Y_index, Y in enumerate(Y_value):

                            if Y_type == "Seeds++ Batch":
                                # Update seed based on the inner loop index
                                seed_updated = seed + Y_index

                            # Define Y parameters and generate labels
                            steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, lora_params, Y_label = \
                                define_variable(Y_type, Y, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
                                                clip_skip, positive_prompt, negative_prompt, lora_params, Y_label, len(Y_value))

                            # Models & Conditionings
                            model, positive, negative, vae = \
                                define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae,
                                         vae_name, ckpt_name, lora_params, Y_index, types, script_node_id, cache)

                            # Generate Results
                            latent_list, image_tensor_list, image_pil_list = \
                                process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0],
                                               positive, negative, latent_image, denoise, vae)

                # Clean up cache
                if cache_models == "False":
                    clear_cache_by_exception(script_node_id, vae_dict=[], ckpt_dict=[], lora_dict=[])
                #
                else:
                    # Prioritrize Caching Checkpoints over LoRAs.
                    if X_type == "LoRA":
                        clear_cache_by_exception(script_node_id, ckpt_dict=[])
                    elif X_type == "Checkpoint":
                        clear_cache_by_exception(script_node_id, lora_dict=[])

                # ______________________________________________________________________________________________________
                def print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params,
                                         vae_name, clip_skip, steps, cfg, sampler_name, scheduler, denoise,
                                         num_rows, num_cols, latent_height, latent_width):

                    print("-" * 40)  # Print an empty line followed by a separator line
                    print("\033[32mXY Plot Results:\033[0m")

                    def get_vae_name(X_type, Y_type, X_value, Y_value, vae_name):
                        if X_type == "VAE":
                            vae_name = ", ".join(map(lambda x: os.path.splitext(os.path.basename(str(x)))[0], X_value))
                        elif Y_type == "VAE":
                            vae_name = ", ".join(map(lambda y: os.path.splitext(os.path.basename(str(y)))[0], Y_value))
                        else:
                            vae_name = os.path.splitext(os.path.basename(str(vae_name)))[0]
                        return vae_name
                    
                    def get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip):
                        if X_type == "Clip Skip":
                            clip_skip = ", ".join(map(str, X_value))
                        elif Y_type == "Clip Skip":
                            clip_skip = ", ".join(map(str, Y_value))
                        else:
                            clip_skip = clip_skip[1]
                        return clip_skip

                    def get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip):
                        if ckpt_type == "Checkpoint":
                            if clip_skip_type == "Clip Skip":
                                ckpt_name = ", ".join([os.path.splitext(os.path.basename(str(ckpt[0])))[0] for ckpt in ckpt_values])
                            else:
                                ckpt_name = ", ".join([f"{os.path.splitext(os.path.basename(str(ckpt[0])))[0]}({str(ckpt[1]) if ckpt[1] is not None else str(clip_skip_values)})"
                                                          for ckpt in ckpt_values])
                                clip_skip = "_"
                        else:
                            ckpt_name = os.path.splitext(os.path.basename(str(ckpt_name)))[0]

                        return ckpt_name, clip_skip

                    def get_lora_name(X_type, Y_type, X_value, Y_value, lora_params=None):
                        if X_type != "LoRA" and Y_type != "LoRA":
                            if lora_params:
                                return f"[{', '.join([f'{os.path.splitext(os.path.basename(name))[0]}({round(model_wt, 3)},{round(clip_wt, 3)})' for name, model_wt, clip_wt in lora_params])}]"
                            else:
                                return None
                        else:
                            return get_lora_sublist_name(X_type,
                                                         X_value) if X_type == "LoRA" else get_lora_sublist_name(Y_type, Y_value) if Y_type == "LoRA" else None

                    def get_lora_sublist_name(lora_type, lora_value):
                        return ", ".join([
                                             f"[{', '.join([f'{os.path.splitext(os.path.basename(str(x[0])))[0]}({round(x[1], 3)},{round(x[2], 3)})' for x in sublist])}]"
                                             for sublist in lora_value])

                    # use these functions:
                    ckpt_type, clip_skip_type = (X_type, Y_type) if X_type in ["Checkpoint", "Clip Skip"] else (Y_type, X_type)
                    ckpt_values, clip_skip_values = (X_value, Y_value) if X_type in ["Checkpoint", "Clip Skip"] else (Y_value, X_value)

                    clip_skip = get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip)
                    ckpt_name, clip_skip = get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip)
                    vae_name = get_vae_name(X_type, Y_type, X_value, Y_value, vae_name)
                    lora_name = get_lora_name(X_type, Y_type, X_value, Y_value, lora_params)

                    seed_list = [seed + x for x in X_value] if X_type == "Seeds++ Batch" else\
                        [seed + y for y in Y_value] if Y_type == "Seeds++ Batch" else [seed]
                    seed = ", ".join(map(str, seed_list))

                    steps = ", ".join(map(str, X_value)) if X_type == "Steps" else ", ".join(
                        map(str, Y_value)) if Y_type == "Steps" else steps

                    cfg = ", ".join(map(str, X_value)) if X_type == "CFG Scale" else ", ".join(
                        map(str, Y_value)) if Y_type == "CFG Scale" else cfg

                    if X_type == "Sampler":
                        if Y_type == "Scheduler":
                            sampler_name = ", ".join([f"{x[0]}" for x in X_value])
                            scheduler = ", ".join([f"{y}" for y in Y_value])
                        else:
                            sampler_name = ", ".join(
                                [f"{x[0]}({x[1] if x[1] != '' and x[1] is not None else scheduler[1]})" for x in X_value])
                            scheduler = "_"
                    elif Y_type == "Sampler":
                        if X_type == "Scheduler":
                            sampler_name = ", ".join([f"{y[0]}" for y in Y_value])
                            scheduler = ", ".join([f"{x}" for x in X_value])
                        else:
                            sampler_name = ", ".join(
                                [f"{y[0]}({y[1] if y[1] != '' and y[1] is not None else scheduler[1]})" for y in Y_value])
                            scheduler = "_"
                    else:
                        scheduler = ", ".join([str(x[0]) if isinstance(x, tuple) else str(x) for x in X_value]) if X_type == "Scheduler" else \
                            ", ".join([str(y[0]) if isinstance(y, tuple) else str(y) for y in Y_value]) if Y_type == "Scheduler" else scheduler[0]

                    denoise = ", ".join(map(str, X_value)) if X_type == "Denoise" else ", ".join(
                        map(str, Y_value)) if Y_type == "Denoise" else denoise

                    # Printouts
                    print(f"img_count: {len(X_value)*len(Y_value)}")
                    print(f"img_dims: {latent_height} x {latent_width}")
                    print(f"plot_dim: {num_cols} x {num_rows}")
                    if clip_skip == "_":
                        print(f"ckpt(clipskip): {ckpt_name if ckpt_name is not None else ''}")
                    else:
                        print(f"ckpt: {ckpt_name if ckpt_name is not None else ''}")
                        print(f"clip_skip: {clip_skip if clip_skip is not None else ''}")
                    if lora_name:
                        print(f"lora(mod,clip): {lora_name if lora_name is not None else ''}")
                    print(f"vae: {vae_name if vae_name is not None else ''}")
                    print(f"seed: {seed}")
                    print(f"steps: {steps}")
                    print(f"cfg: {cfg}")
                    if scheduler == "_":
                        print(f"sampler(schr): {sampler_name}")
                    else:
                        print(f"sampler: {sampler_name}")
                        print(f"scheduler: {scheduler}")
                    print(f"denoise: {denoise}")

                    if X_type == "Positive Prompt S/R" or Y_type == "Positive Prompt S/R":
                        positive_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate(
                            X_value)]) if X_type == "Positive Prompt S/R" else ", ".join(
                            [str(y[0]) if i == 0 else str(y[1]) for i, y in
                             enumerate(Y_value)]) if Y_type == "Positive Prompt S/R" else positive_prompt
                        print(f"+prompt_s/r: {positive_prompt}")

                    if X_type == "Negative Prompt S/R" or Y_type == "Negative Prompt S/R":
                        negative_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate(
                            X_value)]) if X_type == "Negative Prompt S/R" else ", ".join(
                            [str(y[0]) if i == 0 else str(y[1]) for i, y in
                             enumerate(Y_value)]) if Y_type == "Negative Prompt S/R" else negative_prompt
                        print(f"-prompt_s/r: {negative_prompt}")

                # ______________________________________________________________________________________________________
                def adjusted_font_size(text, initial_font_size, latent_width):
                    font = ImageFont.truetype(str(Path(font_path)), initial_font_size)
                    text_width = font.getlength(text)

                    if text_width > (latent_width * 0.9):
                        scaling_factor = 0.9  # A value less than 1 to shrink the font size more aggressively
                        new_font_size = int(initial_font_size * (latent_width / text_width) * scaling_factor)
                    else:
                        new_font_size = initial_font_size

                    return new_font_size

                # ______________________________________________________________________________________________________
                
                # Disable vae decode on next Hold
                update_value_by_id("vae_decode", my_unique_id, False)

                def rearrange_list_A(arr, num_cols, num_rows):
                    new_list = []
                    for i in range(num_rows):
                        for j in range(num_cols):
                            index = j * num_rows + i
                            new_list.append(arr[index])
                    return new_list

                def rearrange_list_B(arr, num_rows, num_cols):
                    new_list = []
                    for i in range(num_rows):
                        for j in range(num_cols):
                            index = i * num_cols + j
                            new_list.append(arr[index])
                    return new_list

                # Extract plot dimensions
                num_rows = max(len(Y_value) if Y_value is not None else 0, 1)
                num_cols = max(len(X_value) if X_value is not None else 0, 1)

                # Flip X & Y results back if flipped earlier (for Checkpoint/LoRA For loop optimizations)
                if flip_xy == True:
                    X_type, Y_type = Y_type, X_type
                    X_value, Y_value = Y_value, X_value
                    X_label, Y_label = Y_label, X_label
                    num_rows, num_cols = num_cols, num_rows
                    image_pil_list = rearrange_list_A(image_pil_list, num_rows, num_cols)
                else:
                    image_pil_list = rearrange_list_B(image_pil_list, num_rows, num_cols)
                    image_tensor_list = rearrange_list_A(image_tensor_list, num_cols, num_rows)
                    latent_list = rearrange_list_A(latent_list, num_cols, num_rows)

                # Print XY Plot Results
                print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params, vae_name,
                                     clip_skip, steps, cfg, sampler_name, scheduler, denoise,
                                     num_rows, num_cols, latent_height, latent_width)

                # Concatenate the tensors along the first dimension (dim=0)
                latent_list = torch.cat(latent_list, dim=0)

                # Store latent_list as last latent
                update_value_by_id("latent", my_unique_id, latent_list)

                # Calculate the dimensions of the white background image
                border_size_top = latent_width // 15

                # Longest Y-label length
                if len(Y_label) > 0:
                    Y_label_longest = max(len(s) for s in Y_label)
                else:
                    # Handle the case when the sequence is empty
                    Y_label_longest = 0  # or any other appropriate value

                Y_label_scale = min(Y_label_longest + 4,24) / 24

                if Y_label_orientation == "Vertical":
                    border_size_left = border_size_top
                else:  # Assuming Y_label_orientation is "Horizontal"
                    # border_size_left is now min(latent_width, latent_height) plus 20% of the difference between the two
                    border_size_left = min(latent_width, latent_height) + int(0.2 * abs(latent_width - latent_height))
                    border_size_left = int(border_size_left * Y_label_scale)

                # Modify the border size, background width and x_offset initialization based on Y_type and Y_label_orientation
                if Y_type == "Nothing":
                    bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing
                    x_offset_initial = 0
                else:
                    if Y_label_orientation == "Vertical":
                        bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + 3 * border_size_left
                        x_offset_initial = border_size_left * 3
                    else:  # Assuming Y_label_orientation is "Horizontal"
                        bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + border_size_left
                        x_offset_initial = border_size_left

                # Modify the background height based on X_type
                if X_type == "Nothing":
                    bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing
                    y_offset = 0
                else:
                    bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing + 3 * border_size_top
                    y_offset = border_size_top * 3

                # Create the white background image
                background = Image.new('RGBA', (int(bg_width), int(bg_height)), color=(255, 255, 255, 255))

                for row in range(num_rows):

                    # Initialize the X_offset
                    x_offset = x_offset_initial

                    for col in range(num_cols):
                        # Calculate the index for image_pil_list
                        index = col * num_rows + row
                        img = image_pil_list[index]

                        # Paste the image
                        background.paste(img, (x_offset, y_offset))

                        if row == 0 and X_type != "Nothing":
                            # Assign text
                            text = X_label[col]

                            # Add the corresponding X_value as a label above the image
                            initial_font_size = int(48 * img.width / 512)
                            font_size = adjusted_font_size(text, initial_font_size, img.width)
                            label_height = int(font_size*1.5)

                            # Create a white background label image
                            label_bg = Image.new('RGBA', (img.width, label_height), color=(255, 255, 255, 0))
                            d = ImageDraw.Draw(label_bg)

                            # Create the font object
                            font = ImageFont.truetype(str(Path(font_path)), font_size)

                            # Calculate the text size and the starting position
                            _, _, text_width, text_height = d.textbbox([0,0], text, font=font)
                            text_x = (img.width - text_width) // 2
                            text_y = (label_height - text_height) // 2

                            # Add the text to the label image
                            d.text((text_x, text_y), text, fill='black', font=font)

                            # Calculate the available space between the top of the background and the top of the image
                            available_space = y_offset - label_height

                            # Calculate the new Y position for the label image
                            label_y = available_space // 2

                            # Paste the label image above the image on the background using alpha_composite()
                            background.alpha_composite(label_bg, (x_offset, label_y))

                        if col == 0 and Y_type != "Nothing":
                            # Assign text
                            text = Y_label[row]

                            # Add the corresponding Y_value as a label to the left of the image
                            if Y_label_orientation == "Vertical":
                                initial_font_size = int(48 * latent_width / 512)  # Adjusting this to be same as X_label size
                                font_size = adjusted_font_size(text, initial_font_size, latent_width)
                            else:  # Assuming Y_label_orientation is "Horizontal"
                                initial_font_size = int(48 *  (border_size_left/Y_label_scale) / 512)  # Adjusting this to be same as X_label size
                                font_size = adjusted_font_size(text, initial_font_size,  int(border_size_left/Y_label_scale))

                            # Create a white background label image
                            label_bg = Image.new('RGBA', (img.height, int(font_size*1.2)), color=(255, 255, 255, 0))
                            d = ImageDraw.Draw(label_bg)

                            # Create the font object
                            font = ImageFont.truetype(str(Path(font_path)), font_size)

                            # Calculate the text size and the starting position
                            _, _, text_width, text_height = d.textbbox([0,0], text, font=font)
                            text_x = (img.height - text_width) // 2
                            text_y = (font_size - text_height) // 2

                            # Add the text to the label image
                            d.text((text_x, text_y), text, fill='black', font=font)

                            # Rotate the label_bg 90 degrees counter-clockwise only if Y_label_orientation is "Vertical"
                            if Y_label_orientation == "Vertical":
                                label_bg = label_bg.rotate(90, expand=True)

                            # Calculate the available space between the left of the background and the left of the image
                            available_space = x_offset - label_bg.width

                            # Calculate the new X position for the label image
                            label_x = available_space // 2

                            # Calculate the Y position for the label image based on its orientation
                            if Y_label_orientation == "Vertical":
                                label_y = y_offset + (img.height - label_bg.height) // 2
                            else:  # Assuming Y_label_orientation is "Horizontal"
                                label_y = y_offset + img.height - (img.height - label_bg.height) // 2

                            # Paste the label image to the left of the image on the background using alpha_composite()
                            background.alpha_composite(label_bg, (label_x, label_y))

                        # Update the x_offset
                        x_offset += img.width + grid_spacing

                    # Update the y_offset
                    y_offset += img.height + grid_spacing

                images = pil2tensor(background)

             # Generate image results and store
            results = preview_images(images, filename_prefix)
            update_value_by_id("results", my_unique_id, results)

            # Squeeze and Stack the tensors, and store results
            if xyplot_as_output_image == False:
                image_tensor_list = torch.stack([tensor.squeeze() for tensor in image_tensor_list])
            else:
                image_tensor_list = images
            update_value_by_id("images", my_unique_id, image_tensor_list)

            # Print cache if set to true
            if cache_models == "True":
                print_loaded_objects_entries(script_node_id, prompt)

            print("-" * 40)  # Print an empty line followed by a separator line

            images = list() if preview_image == "Output Only" else results

            return {
                "ui": {"images": images},
                "result": (model, positive, negative, {"samples": latent_list}, vae, image_tensor_list,)
            }

########################################################################################################################
# TSC XY Plot
class TSC_XYplot:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                    "grid_spacing": ("INT", {"default": 0, "min": 0, "max": 500, "step": 5}),
                    "XY_flip": (["False","True"],),
                    "Y_label_orientation": (["Horizontal", "Vertical"],),
                    "cache_models": (["True", "False"],),
                    "ksampler_output_image": (["Plot", "Images"],),},
                "optional": {
                    "dependencies": ("DEPENDENCIES", ),
                    "X": ("XY", ),
                    "Y": ("XY", ),},
        }

    RETURN_TYPES = ("SCRIPT",)
    RETURN_NAMES = ("SCRIPT",)
    FUNCTION = "XYplot"
    CATEGORY = "Efficiency Nodes/XY Plot"

    def XYplot(self, grid_spacing, XY_flip, Y_label_orientation, cache_models, ksampler_output_image, dependencies=None, X=None, Y=None):

        # Unpack X & Y Tuples if connected
        if X != None:
            X_type, X_value  = X
        else:
            X_type = "Nothing"
            X_value = [""]
        if Y != None:
            Y_type, Y_value = Y
        else:
            Y_type = "Nothing"
            Y_value = [""]

        # If types are the same exit. If one isn't "Nothing", print error
        if (X_type == Y_type):
            if X_type != "Nothing":
                print(f"\033[31mXY Plot Error:\033[0m X and Y input types must be different.")
            return (None,)

        # Check that dependencies is connected for Checkpoint and LoRA plots
        types = ("Checkpoint", "LoRA", "Positive Prompt S/R", "Negative Prompt S/R")
        if X_type in types or Y_type in types:
            if dependencies == None: # Not connected
                print(f"\033[31mXY Plot Error:\033[0m The dependencies input must be connected for certain plot types.")
                # Return None
                return (None,)

        # Define X/Y_values for "Seeds++ Batch"
        if X_type == "Seeds++ Batch":
            X_value = [i for i in range(X_value[0])]
        if Y_type == "Seeds++ Batch":
            Y_value = [i for i in range(Y_value[0])]

        # Clean Schedulers from Sampler data (if other type is Scheduler)
        if X_type == "Sampler" and Y_type == "Scheduler":
            # Clear X_value Scheduler's
            X_value = [(x[0], "") for x in X_value]
        elif Y_type == "Sampler" and X_type == "Scheduler":
            # Clear Y_value Scheduler's
            Y_value = [(y[0], "") for y in Y_value]

        # Embed information into "Scheduler" X/Y_values for text label
        if X_type == "Scheduler" and Y_type != "Sampler":
            # X_value second tuple value of each array entry = None
            X_value = [(x, None) for x in X_value]

        if Y_type == "Scheduler" and X_type != "Sampler":
            # Y_value second tuple value of each array entry = None
            Y_value = [(y, None) for y in Y_value]

        # Optimize image generation by prioritizing Checkpoint>LoRA>VAE>PromptSR as X in For Loop. Flip back when done.
        if Y_type == "Checkpoint" or \
                Y_type == "LoRA" and X_type not in {"Checkpoint"} or \
                Y_type == "VAE" and X_type not in {"Checkpoint", "LoRA"} or \
                Y_type == "Positive Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE",
                                                                   "Negative Prompt S/R"} or \
                Y_type == "Negative Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE",
                                                                   "Positive Prompt S/R"} or \
                X_type == "Nothing" and Y_type != "Nothing":
            flip_xy = True
            X_type, Y_type = Y_type, X_type
            X_value, Y_value = Y_value, X_value
        else:
            flip_xy = False

        # Flip X and Y
        if XY_flip == "True":
            X_type, Y_type = Y_type, X_type
            X_value, Y_value = Y_value, X_value

        # Define Ksampler output image behavior
        xyplot_as_output_image = ksampler_output_image == "Plot"

        return ((X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models,
                 xyplot_as_output_image, flip_xy, dependencies),)


# TSC XY Plot: Seeds Values
class TSC_XYplot_SeedsBatch:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "batch_count": ("INT", {"default": 1, "min": 0, "max": 50}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, batch_count):
        if batch_count == 0:
            return (None,)
        xy_type = "Seeds++ Batch"
        xy_value = [batch_count]
        return ((xy_type, xy_value),)

# TSC XY Plot: Step Values
class TSC_XYplot_Steps:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
            "steps_1": ("INT", {"default": 20, "min": 1, "max": 10000}),
            "steps_2": ("INT", {"default": 20, "min": 1, "max": 10000}),
            "steps_3": ("INT", {"default": 20, "min": 1, "max": 10000}),
            "steps_4": ("INT", {"default": 20, "min": 1, "max": 10000}),
            "steps_5": ("INT", {"default": 20, "min": 1, "max": 10000}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, select_count, steps_1, steps_2, steps_3, steps_4, steps_5):
        xy_type = "Steps"
        xy_value = [step for idx, step in enumerate([steps_1, steps_2, steps_3, steps_4, steps_5], start=1) if
                 idx <= select_count]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: CFG Values
class TSC_XYplot_CFG:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
            "cfg_1": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
            "cfg_2": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
            "cfg_3": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
            "cfg_4": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
            "cfg_5": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, select_count, cfg_1, cfg_2, cfg_3, cfg_4, cfg_5):
        xy_type = "CFG Scale"
        xy_value = [cfg for idx, cfg in enumerate([cfg_1, cfg_2, cfg_3, cfg_4, cfg_5], start=1) if idx <= select_count]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: Sampler Values
class TSC_XYplot_Sampler:
    
    samplers = ["None"] + comfy.samplers.KSampler.SAMPLERS
    schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                            "sampler_1": (cls.samplers,),
                            "scheduler_1": (cls.schedulers,),
                            "sampler_2": (cls.samplers,),
                            "scheduler_2": (cls.schedulers,),
                            "sampler_3": (cls.samplers,),
                            "scheduler_3": (cls.schedulers,),
                            "sampler_4": (cls.samplers,),
                            "scheduler_4": (cls.schedulers,),
                            "sampler_5": (cls.samplers,),
                            "scheduler_5": (cls.schedulers,),},
                }
    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, sampler_1, scheduler_1, sampler_2, scheduler_2, sampler_3, scheduler_3,
                 sampler_4, scheduler_4, sampler_5, scheduler_5):

        samplers = [sampler_1, sampler_2, sampler_3, sampler_4, sampler_5]
        schedulers = [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5]

        pairs = []
        for sampler, scheduler in zip(samplers, schedulers):
            if sampler != "None":
                if scheduler != "None":
                    pairs.append((sampler, scheduler))
                else:
                    pairs.append((sampler,None))

        xy_type = "Sampler"
        xy_value = pairs
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: Scheduler Values
class TSC_XYplot_Scheduler:

    schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "scheduler_1": (cls.schedulers,),
            "scheduler_2": (cls.schedulers,),
            "scheduler_3": (cls.schedulers,),
            "scheduler_4": (cls.schedulers,),
            "scheduler_5": (cls.schedulers,),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5):
        xy_type = "Scheduler"
        xy_value = [scheduler for scheduler in [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5] if
                      scheduler != "None"]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: Denoise Values
class TSC_XYplot_Denoise:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
            "denoise_1": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
            "denoise_2": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
            "denoise_3": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
            "denoise_4": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
            "denoise_5": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, select_count, denoise_1, denoise_2, denoise_3, denoise_4, denoise_5):
        xy_type = "Denoise"
        xy_value = [denoise for idx, denoise in
                    enumerate([denoise_1, denoise_2, denoise_3, denoise_4, denoise_5], start=1) if idx <= select_count]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: VAE Values
class TSC_XYplot_VAE:

    vaes = ["None"] + folder_paths.get_filename_list("vae")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "vae_name_1": (cls.vaes,),
            "vae_name_2": (cls.vaes,),
            "vae_name_3": (cls.vaes,),
            "vae_name_4": (cls.vaes,),
            "vae_name_5": (cls.vaes,),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5):
        xy_type = "VAE"
        xy_value = [vae for vae in [vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5] if vae != "None"]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: Prompt S/R Positive
class TSC_XYplot_PromptSR_Positive:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "search_txt": ("STRING", {"default": "", "multiline": False}),
            "replace_count": ("INT", {"default": 0, "min": 0, "max": 4}),
            "replace_1":("STRING", {"default": "", "multiline": False}),
            "replace_2": ("STRING", {"default": "", "multiline": False}),
            "replace_3": ("STRING", {"default": "", "multiline": False}),
            "replace_4": ("STRING", {"default": "", "multiline": False}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4):
        # If search_txt is empty, return (None,)
        if search_txt == "":
            return (None,)

        xy_type = "Positive Prompt S/R"

        # Create a list of replacement arguments
        replacements = [replace_1, replace_2, replace_3, replace_4]

        # Create base entry
        xy_values = [(search_txt, None)]

        if replace_count > 0:
            # Append additional entries based on replace_count
            xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)])

        return ((xy_type, xy_values),)

# TSC XY Plot: Prompt S/R Negative
class TSC_XYplot_PromptSR_Negative:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "search_txt": ("STRING", {"default": "", "multiline": False}),
            "replace_count": ("INT", {"default": 0, "min": 0, "max": 4}),
            "replace_1":("STRING", {"default": "", "multiline": False}),
            "replace_2": ("STRING", {"default": "", "multiline": False}),
            "replace_3": ("STRING", {"default": "", "multiline": False}),
            "replace_4": ("STRING", {"default": "", "multiline": False}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4):
        # If search_txt is empty, return (None,)
        if search_txt == "":
            return (None,)

        xy_type = "Negative Prompt S/R"

        # Create a list of replacement arguments
        replacements = [replace_1, replace_2, replace_3, replace_4]

        # Create base entry
        xy_values = [(search_txt, None)]

        if replace_count > 0:
            # Append additional entries based on replace_count
            xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)])

        return ((xy_type, xy_values),)

# TSC XY Plot: Checkpoint Values
class TSC_XYplot_Checkpoint:

    checkpoints = ["None"] + folder_paths.get_filename_list("checkpoints")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "ckpt_name_1": (cls.checkpoints,),
            "clip_skip1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
            "ckpt_name_2": (cls.checkpoints,),
            "clip_skip2": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
            "ckpt_name_3": (cls.checkpoints,),
            "clip_skip3": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
            "ckpt_name_4": (cls.checkpoints,),
            "clip_skip4": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
            "ckpt_name_5": (cls.checkpoints,),
            "clip_skip5": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, ckpt_name_1, clip_skip1, ckpt_name_2, clip_skip2, ckpt_name_3, clip_skip3,
                 ckpt_name_4, clip_skip4, ckpt_name_5, clip_skip5):
        xy_type = "Checkpoint"
        checkpoints = [ckpt_name_1, ckpt_name_2, ckpt_name_3, ckpt_name_4, ckpt_name_5]
        clip_skips = [clip_skip1, clip_skip2, clip_skip3, clip_skip4, clip_skip5]
        xy_value = [(checkpoint, clip_skip) for checkpoint, clip_skip in zip(checkpoints, clip_skips) if
                    checkpoint != "None"]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)

# TSC XY Plot: Clip Skip
class TSC_XYplot_ClipSkip:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
            "clip_skip_1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
            "clip_skip_2": ("INT", {"default": -2, "min": -24, "max": -1, "step": 1}),
            "clip_skip_3": ("INT", {"default": -3, "min": -24, "max": -1, "step": 1}),
            "clip_skip_4": ("INT", {"default": -4, "min": -24, "max": -1, "step": 1}),
            "clip_skip_5": ("INT", {"default": -5, "min": -24, "max": -1, "step": 1}),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, select_count, clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5):
        xy_type = "Clip Skip"
        xy_value = [clip_skip for idx, clip_skip in
                    enumerate([clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5], start=1) if idx <= select_count]
        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)

# TSC XY Plot: LoRA Values
class TSC_XYplot_LoRA:

    loras = ["None"] + folder_paths.get_filename_list("loras")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                            "model_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "lora_name_1": (cls.loras,),
                            "lora_name_2": (cls.loras,),
                            "lora_name_3": (cls.loras,),
                            "lora_name_4": (cls.loras,),
                            "lora_name_5": (cls.loras,)},
                "optional": {"lora_stack": ("LORA_STACK", )}
                }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, model_strengths, clip_strengths, lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5,
                 lora_stack=None):
        xy_type = "LoRA"
        loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5]

        # Extend each sub-array with lora_stack if it's not None
        xy_value = [[(lora, model_strengths, clip_strengths)] + (lora_stack if lora_stack else []) for lora in loras if
                    lora != "None"]

        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: LoRA Advanced
class TSC_XYplot_LoRA_Adv:

    loras = ["None"] + folder_paths.get_filename_list("loras")

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                            "lora_name_1": (cls.loras,),
                            "model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "lora_name_2": (cls.loras,),
                            "model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "lora_name_3": (cls.loras,),
                            "model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "lora_name_4": (cls.loras,),
                            "model_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "lora_name_5": (cls.loras,),
                            "model_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                            "clip_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),},
                "optional": {"lora_stack": ("LORA_STACK",)}
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2, lora_name_3,
                 model_str_3,
                 clip_str_3, lora_name_4, model_str_4, clip_str_4, lora_name_5, model_str_5, clip_str_5,
                 lora_stack=None):
        xy_type = "LoRA"
        loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5]
        model_strs = [model_str_1, model_str_2, model_str_3, model_str_4, model_str_5]
        clip_strs = [clip_str_1, clip_str_2, clip_str_3, clip_str_4, clip_str_5]

        # Extend each sub-array with lora_stack if it's not None
        xy_value = [[(lora, model_str, clip_str)] + (lora_stack if lora_stack else []) for lora, model_str, clip_str in
                    zip(loras, model_strs, clip_strs) if lora != "None"]

        if not xy_value:  # Check if the list is empty
            return (None,)
        return ((xy_type, xy_value),)


# TSC XY Plot: LoRA Stacks
class TSC_XYplot_LoRA_Stacks:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                    "node_state": (["Enabled", "Disabled"],)},
                "optional": {
                    "lora_stack_1": ("LORA_STACK",),
                    "lora_stack_2": ("LORA_STACK",),
                    "lora_stack_3": ("LORA_STACK",),
                    "lora_stack_4": ("LORA_STACK",),
                    "lora_stack_5": ("LORA_STACK",),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, node_state, lora_stack_1=None, lora_stack_2=None, lora_stack_3=None, lora_stack_4=None, lora_stack_5=None):
        xy_type = "LoRA"
        xy_value = [stack for stack in [lora_stack_1, lora_stack_2, lora_stack_3, lora_stack_4, lora_stack_5] if stack is not None]
        if not xy_value or not any(xy_value) or node_state == "Disabled":
            return (None,)
        else:
            return ((xy_type, xy_value),)

# TSC XY Plot: Manual Entry Notes
class TSC_XYplot_Manual_XY_Entry_Info:

    syntax = "(X/Y_types)     (X/Y_values)\n" \
               "Seeds++ Batch   batch_count\n" \
               "Steps           steps_1;steps_2;...\n" \
               "CFG Scale       cfg_1;cfg_2;...\n" \
               "Sampler(1)      sampler_1;sampler_2;...\n" \
               "Sampler(2)      sampler_1,scheduler_1;...\n" \
               "Sampler(3)      sampler_1;...;,default_scheduler\n" \
               "Scheduler       scheduler_1;scheduler_2;...\n" \
               "Denoise         denoise_1;denoise_2;...\n" \
               "VAE             vae_1;vae_2;vae_3;...\n" \
               "+Prompt S/R     search_txt;replace_1;replace_2;...\n" \
               "-Prompt S/R     search_txt;replace_1;replace_2;...\n" \
               "Checkpoint(1)   ckpt_1;ckpt_2;ckpt_3;...\n" \
               "Checkpoint(2)   ckpt_1,clip_skip_1;...\n" \
               "Checkpoint(3)   ckpt_1;ckpt_2;...;,default_clip_skip\n" \
               "Clip Skip       clip_skip_1;clip_skip_2;...\n" \
               "LoRA(1)         lora_1;lora_2;lora_3;...\n" \
               "LoRA(2)         lora_1;...;,default_model_str,default_clip_str\n" \
               "LoRA(3)         lora_1,model_str_1,clip_str_1;..."

    samplers = ";\n".join(comfy.samplers.KSampler.SAMPLERS)
    schedulers = ";\n".join(comfy.samplers.KSampler.SCHEDULERS)
    vaes = ";\n".join(folder_paths.get_filename_list("vae"))
    ckpts = ";\n".join(folder_paths.get_filename_list("checkpoints"))
    loras = ";\n".join(folder_paths.get_filename_list("loras"))

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "notes": ("STRING", {"default":
                                    f"_____________SYNTAX_____________\n{cls.syntax}\n\n"
                                    f"____________SAMPLERS____________\n{cls.samplers}\n\n"
                                    f"___________SCHEDULERS___________\n{cls.schedulers}\n\n"
                                    f"_____________VAES_______________\n{cls.vaes}\n\n"
                                    f"___________CHECKPOINTS__________\n{cls.ckpts}\n\n"
                                    f"_____________LORAS______________\n{cls.loras}\n","multiline": True}),},}

    RETURN_TYPES = ()
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

# TSC XY Plot: Manual Entry
class TSC_XYplot_Manual_XY_Entry:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "X_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE",
                        "Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],),
            "X_value": ("STRING", {"default": "", "multiline": True}),
            "Y_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE",
                        "Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],),
            "Y_value": ("STRING", {"default": "", "multiline": True}),},}

    RETURN_TYPES = ("XY", "XY",)
    RETURN_NAMES = ("X", "Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, X_type, X_value, Y_type, Y_value, prompt=None, my_unique_id=None):

        # Store X values as arrays
        if X_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}:
            X_value = X_value.replace(" ", "")  # Remove spaces
        X_value = X_value.replace("\n", "")  # Remove newline characters
        X_value = X_value.rstrip(";")  # Remove trailing semicolon
        X_value = X_value.split(";")  # Turn to array

        # Store Y values as arrays
        if Y_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}:
            Y_value = Y_value.replace(" ", "")  # Remove spaces
        Y_value = Y_value.replace("\n", "")  # Remove newline characters
        Y_value = Y_value.rstrip(";")  # Remove trailing semicolon
        Y_value = Y_value.split(";")  # Turn to array

        # Define the valid bounds for each type
        bounds = {
            "Seeds++ Batch": {"min": 0, "max": 50},
            "Steps": {"min": 1, "max": 10000},
            "CFG Scale": {"min": 0, "max": 100},
            "Sampler": {"options": comfy.samplers.KSampler.SAMPLERS},
            "Scheduler": {"options": comfy.samplers.KSampler.SCHEDULERS},
            "Denoise": {"min": 0, "max": 1},
            "VAE": {"options": folder_paths.get_filename_list("vae")},
            "Checkpoint": {"options": folder_paths.get_filename_list("checkpoints")},
            "Clip Skip": {"min": -24, "max": -1},
            "LoRA": {"options": folder_paths.get_filename_list("loras"),
                     "model_str": {"min": 0, "max": 10},"clip_str": {"min": 0, "max": 10},},
        }

        # Validates a value based on its corresponding value_type and bounds.
        def validate_value(value, value_type, bounds):
            # ________________________________________________________________________
            # Seeds++ Batch
            if value_type == "Seeds++ Batch":
                try:
                    x = int(float(value))
                    if x < bounds["Seeds++ Batch"]["min"]:
                        x = bounds["Seeds++ Batch"]["min"]
                    elif x > bounds["Seeds++ Batch"]["max"]:
                        x = bounds["Seeds++ Batch"]["max"]
                except ValueError:
                    print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid batch count.")
                    return None
                if float(value) != x:
                    print(f"\033[31mmXY Plot Error:\033[0m '{value}' is not a valid batch count.")
                    return None
                return x
            # ________________________________________________________________________
            # Steps
            elif value_type == "Steps":
                try:
                    x = int(value)
                    if x < bounds["Steps"]["min"]:
                        x = bounds["Steps"]["min"]
                    elif x > bounds["Steps"]["max"]:
                        x = bounds["Steps"]["max"]
                    return x
                except ValueError:
                    print(
                        f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Step count.")
                    return None
            # ________________________________________________________________________
            # CFG Scale
            elif value_type == "CFG Scale":
                try:
                    x = float(value)
                    if x < bounds["CFG Scale"]["min"]:
                        x = bounds["CFG Scale"]["min"]
                    elif x > bounds["CFG Scale"]["max"]:
                        x = bounds["CFG Scale"]["max"]
                    return x
                except ValueError:
                    print(
                        f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['CFG Scale']['min']}"
                        f" and {bounds['CFG Scale']['max']} for CFG Scale.")
                    return None
            # ________________________________________________________________________
            # Sampler
            elif value_type == "Sampler":
                if isinstance(value, str) and ',' in value:
                    value = tuple(map(str.strip, value.split(',')))
                if isinstance(value, tuple):
                    if len(value) >= 2:
                        value = value[:2]  # Slice the value tuple to keep only the first two elements
                        sampler, scheduler = value
                        scheduler = scheduler.lower()  # Convert the scheduler name to lowercase
                        if sampler not in bounds["Sampler"]["options"]:
                            valid_samplers = '\n'.join(bounds["Sampler"]["options"])
                            print(
                                f"\033[31mXY Plot Error:\033[0m '{sampler}' is not a valid sampler. Valid samplers are:\n{valid_samplers}")
                            sampler = None
                        if scheduler not in bounds["Scheduler"]["options"]:
                            valid_schedulers = '\n'.join(bounds["Scheduler"]["options"])
                            print(
                                f"\033[31mXY Plot Error:\033[0m '{scheduler}' is not a valid scheduler. Valid schedulers are:\n{valid_schedulers}")
                            scheduler = None
                        if sampler is None or scheduler is None:
                            return None
                        else:
                            return sampler, scheduler
                    else:
                        print(
                            f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler.'")
                        return None
                else:
                    if value not in bounds["Sampler"]["options"]:
                        valid_samplers = '\n'.join(bounds["Sampler"]["options"])
                        print(
                            f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler. Valid samplers are:\n{valid_samplers}")
                        return None
                    else:
                        return value, None
            # ________________________________________________________________________
            # Scheduler
            elif value_type == "Scheduler":
                if value not in bounds["Scheduler"]["options"]:
                    valid_schedulers = '\n'.join(bounds["Scheduler"]["options"])
                    print(
                        f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Scheduler. Valid Schedulers are:\n{valid_schedulers}")
                    return None
                else:
                    return value
            # ________________________________________________________________________
            # Denoise
            elif value_type == "Denoise":
                try:
                    x = float(value)
                    if x < bounds["Denoise"]["min"]:
                        x = bounds["Denoise"]["min"]
                    elif x > bounds["Denoise"]["max"]:
                        x = bounds["Denoise"]["max"]
                    return x
                except ValueError:
                    print(
                        f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['Denoise']['min']} "
                        f"and {bounds['Denoise']['max']} for Denoise.")
                    return None
            # ________________________________________________________________________
            # VAE
            elif value_type == "VAE":
                if value not in bounds["VAE"]["options"]:
                    valid_vaes = '\n'.join(bounds["VAE"]["options"])
                    print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid VAE. Valid VAEs are:\n{valid_vaes}")
                    return None
                else:
                    return value
            # ________________________________________________________________________
            # Checkpoint
            elif value_type == "Checkpoint":
                if isinstance(value, str) and ',' in value:
                    value = tuple(map(str.strip, value.split(',')))
                if isinstance(value, tuple):
                    if len(value) >= 2:
                        value = value[:2]  # Slice the value tuple to keep only the first two elements
                        checkpoint, clip_skip = value
                        try:
                            clip_skip = int(clip_skip)  # Convert the clip_skip to integer
                        except ValueError:
                            print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip_skip. "
                                  f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.")
                            return None
                        if checkpoint not in bounds["Checkpoint"]["options"]:
                            valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"])
                            print(
                                f"\033[31mXY Plot Error:\033[0m '{checkpoint}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}")
                            checkpoint = None
                        if clip_skip < bounds["Clip Skip"]["min"] or clip_skip > bounds["Clip Skip"]["max"]:
                            print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip skip. "
                                  f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.")
                            clip_skip = None
                        if checkpoint is None or clip_skip is None:
                            return None
                        else:
                            return checkpoint, clip_skip
                    else:
                        print(
                            f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint.'")
                        return None
                else:
                    if value not in bounds["Checkpoint"]["options"]:
                        valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"])
                        print(
                            f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}")
                        return None
                    else:
                        return value, None
            # ________________________________________________________________________
            # Clip Skip
            elif value_type == "Clip Skip":
                try:
                    x = int(value)
                    if x < bounds["Clip Skip"]["min"]:
                        x = bounds["Clip Skip"]["min"]
                    elif x > bounds["Clip Skip"]["max"]:
                        x = bounds["Clip Skip"]["max"]
                    return x
                except ValueError:
                    print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Clip Skip.")
                    return None
            # ________________________________________________________________________
            # LoRA
            elif value_type == "LoRA":
                if isinstance(value, str) and ',' in value:
                    value = tuple(map(str.strip, value.split(',')))

                if isinstance(value, tuple):
                    lora_name, model_str, clip_str = (value + (1.0, 1.0))[:3]  # Defaults model_str and clip_str to 1 if not provided

                    if lora_name not in bounds["LoRA"]["options"]:
                        valid_loras = '\n'.join(bounds["LoRA"]["options"])
                        print(f"\033[31mXY Plot Error:\033[0m '{lora_name}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}")
                        lora_name = None

                    try:
                        model_str = float(model_str)
                        clip_str = float(clip_str)
                    except ValueError:
                        print(f"\033[31mXY Plot Error:\033[0m The LoRA model strength and clip strength values should be numbers"
                              f" between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.")
                        return None

                    if model_str < bounds["LoRA"]["model_str"]["min"] or model_str > bounds["LoRA"]["model_str"]["max"]:
                        print(f"\033[31mXY Plot Error:\033[0m '{model_str}' is not a valid LoRA model strength value. "
                              f"Valid lora model strength values are between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.")
                        model_str = None

                    if clip_str < bounds["LoRA"]["clip_str"]["min"] or clip_str > bounds["LoRA"]["clip_str"]["max"]:
                        print(f"\033[31mXY Plot Error:\033[0m '{clip_str}' is not a valid LoRA clip strength value. "
                              f"Valid lora clip strength values are between {bounds['LoRA']['clip_str']['min']} and {bounds['LoRA']['clip_str']['max']}.")
                        clip_str = None

                    if lora_name is None or model_str is None or clip_str is None:
                        return None
                    else:
                        return lora_name, model_str, clip_str
                else:
                    if value not in bounds["LoRA"]["options"]:
                        valid_loras = '\n'.join(bounds["LoRA"]["options"])
                        print(
                            f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}")
                        return None
                    else:
                        return value, 1.0, 1.0

            # ________________________________________________________________________
            else:
                return None

        # Validate X_value array length is 1 if doing a "Seeds++ Batch"
        if len(X_value) != 1 and X_type == "Seeds++ Batch":
            print(f"\033[31mXY Plot Error:\033[0m '{';'.join(X_value)}' is not a valid batch count.")
            return (None,None,)

        # Validate Y_value array length is 1 if doing a "Seeds++ Batch"
        if len(Y_value) != 1 and Y_type == "Seeds++ Batch":
            print(f"\033[31mXY Plot Error:\033[0m '{';'.join(Y_value)}' is not a valid batch count.")
            return (None,None,)

        # Apply allowed shortcut syntax to certain input types
        if X_type in ["Sampler", "Checkpoint", "LoRA"]:
            if X_value[-1].startswith(','):
                # Remove the leading comma from the last entry and store it as suffixes
                suffixes = X_value.pop().lstrip(',').split(',')
                # Split all preceding entries into subentries
                X_value = [entry.split(',') for entry in X_value]
                # Make all entries the same length as suffixes by appending missing elements
                for entry in X_value:
                    entry += suffixes[len(entry) - 1:]
                # Join subentries back into strings
                X_value = [','.join(entry) for entry in X_value]

        # Apply allowed shortcut syntax to certain input types
        if Y_type in ["Sampler", "Checkpoint", "LoRA"]:
            if Y_value[-1].startswith(','):
                # Remove the leading comma from the last entry and store it as suffixes
                suffixes = Y_value.pop().lstrip(',').split(',')
                # Split all preceding entries into subentries
                Y_value = [entry.split(',') for entry in Y_value]
                # Make all entries the same length as suffixes by appending missing elements
                for entry in Y_value:
                    entry += suffixes[len(entry) - 1:]
                # Join subentries back into strings
                Y_value = [','.join(entry) for entry in Y_value]

        # Prompt S/R X Cleanup
        if X_type in {"Positive Prompt S/R", "Negative Prompt S/R"}:
            if X_value[0] == '':
                print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.")
                return (None, None,)
            else:
                X_value = [(X_value[0], None) if i == 0 else (X_value[0], x) for i, x in enumerate(X_value)]

        # Prompt S/R X Cleanup
        if Y_type in {"Positive Prompt S/R", "Negative Prompt S/R"}:
            if Y_value[0] == '':
                print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.")
                return (None, None,)
            else:
                Y_value = [(Y_value[0], None) if i == 0 else (Y_value[0], y) for i, y in enumerate(Y_value)]

        # Loop over each entry in X_value and check if it's valid
        if X_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}:
            for i in range(len(X_value)):
                X_value[i] = validate_value(X_value[i], X_type, bounds)
                if X_value[i] == None:
                    return (None,None,)

        # Loop over each entry in Y_value and check if it's valid
        if Y_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}:
            for i in range(len(Y_value)):
                Y_value[i] = validate_value(Y_value[i], Y_type, bounds)
                if Y_value[i] == None:
                    return (None,None,)

        # Nest LoRA value in another array to reflect LoRA stack changes
        if X_type == "LoRA":
            X_value = [X_value]
        if Y_type == "LoRA":
            Y_value = [Y_value]

        # Clean X/Y_values
        if X_type == "Nothing":
            X_value = [""]
        if Y_type == "Nothing":
            Y_value = [""]

        return ((X_type, X_value), (Y_type, Y_value),)

# TSC XY Plot: Seeds Values
class TSC_XYplot_JoinInputs:

    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
            "XY_1": ("XY",),
            "XY_2": ("XY",),},
        }

    RETURN_TYPES = ("XY",)
    RETURN_NAMES = ("X or Y",)
    FUNCTION = "xy_value"
    CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"

    def xy_value(self, XY_1, XY_2):
        xy_type_1, xy_value_1 = XY_1
        xy_type_2, xy_value_2 = XY_2

        if xy_type_1 != xy_type_2:
            print(f"\033[31mJoin XY Inputs Error:\033[0m Input types must match")
            return (None,)
        elif xy_type_1 == "Seeds++ Batch":
            xy_type = xy_type_1
            xy_value = [xy_value_1[0] + xy_value_2[0]]
        elif xy_type_1 == "Positive Prompt S/R" or xy_type_1 == "Negative Prompt S/R":
            xy_type = xy_type_1
            xy_value = xy_value_1 + [(xy_value_1[0][0], t[1]) for t in xy_value_2[1:]]
        else:
            xy_type = xy_type_1
            xy_value = xy_value_1 + xy_value_2
        return ((xy_type, xy_value),)

########################################################################################################################
# TSC Image Overlay
class TSC_ImageOverlay:

    @classmethod
    def INPUT_TYPES(cls):
        return {
            "required": {
                "base_image": ("IMAGE",),
                "overlay_image": ("IMAGE",),
                "overlay_resize": (["None", "Fit", "Resize by rescale_factor", "Resize to width & heigth"],),
                "resize_method": (["nearest-exact", "bilinear", "area"],),
                "rescale_factor": ("FLOAT", {"default": 1, "min": 0.01, "max": 16.0, "step": 0.1}),
                "width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
                "x_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}),
                "y_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}),
                "rotation": ("INT", {"default": 0, "min": -180, "max": 180, "step": 5}),
                "opacity": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 5}),
            },
            "optional": {"optional_mask": ("MASK",),}
        }

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "apply_overlay_image"
    CATEGORY = "Efficiency Nodes/Image"

    def apply_overlay_image(self, base_image, overlay_image, overlay_resize, resize_method, rescale_factor,
                            width, height, x_offset, y_offset, rotation, opacity, optional_mask=None):

        # Pack tuples and assign variables
        size = width, height
        location = x_offset, y_offset
        mask = optional_mask

        # Check for different sizing options
        if overlay_resize != "None":
            #Extract overlay_image size and store in Tuple "overlay_image_size" (WxH)
            overlay_image_size = overlay_image.size()
            overlay_image_size = (overlay_image_size[2], overlay_image_size[1])
            if overlay_resize == "Fit":
                overlay_image_size = (base_image.size[0],base_image.size[1])
            elif overlay_resize == "Resize by rescale_factor":
                overlay_image_size = tuple(int(dimension * rescale_factor) for dimension in overlay_image_size)
            elif overlay_resize == "Resize to width & heigth":
                overlay_image_size = (size[0], size[1])

            samples = overlay_image.movedim(-1, 1)
            overlay_image = comfy.utils.common_upscale(samples, overlay_image_size[0], overlay_image_size[1], resize_method, False)
            overlay_image = overlay_image.movedim(1, -1)
            
        overlay_image = tensor2pil(overlay_image)

         # Add Alpha channel to overlay
        overlay_image = overlay_image.convert('RGBA')
        overlay_image.putalpha(Image.new("L", overlay_image.size, 255))

        # If mask connected, check if the overlay_image image has an alpha channel
        if mask is not None:
            # Convert mask to pil and resize
            mask = tensor2pil(mask)
            mask = mask.resize(overlay_image.size)
            # Apply mask as overlay's alpha
            overlay_image.putalpha(ImageOps.invert(mask))

        # Rotate the overlay image
        overlay_image = overlay_image.rotate(rotation, expand=True)

        # Apply opacity on overlay image
        r, g, b, a = overlay_image.split()
        a = a.point(lambda x: max(0, int(x * (1 - opacity / 100))))
        overlay_image.putalpha(a)

        # Split the base_image tensor along the first dimension to get a list of tensors
        base_image_list = torch.unbind(base_image, dim=0)

        # Convert each tensor to a PIL image, apply the overlay, and then convert it back to a tensor
        processed_base_image_list = []
        for tensor in base_image_list:
            # Convert tensor to PIL Image
            image = tensor2pil(tensor)

            # Paste the overlay image onto the base image
            if mask is None:
                image.paste(overlay_image, location)
            else:
                image.paste(overlay_image, location, overlay_image)

            # Convert PIL Image back to tensor
            processed_tensor = pil2tensor(image)

            # Append to list
            processed_base_image_list.append(processed_tensor)

        # Combine the processed images back into a single tensor
        base_image = torch.stack([tensor.squeeze() for tensor in processed_base_image_list])

        # Return the edited base image
        return (base_image,)

########################################################################################################################
# Install simple_eval if missing from packages
def install_simpleeval():
    if 'simpleeval' not in packages():
        print("\033[32mEfficiency Nodes:\033[0m")
        subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'simpleeval'])

def packages(versions=False):
    return [(r.decode().split('==')[0] if not versions else r.decode()) for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()]

install_simpleeval()
from simpleeval import simple_eval

# TSC Evaluate Integers (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateInts:
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                    "python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}),
                    "print_to_console": (["False", "True"],),},
                "optional": {
                    "a": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),
                    "b": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),
                    "c": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),},
                }
    RETURN_TYPES = ("INT", "FLOAT", "STRING",)
    OUTPUT_NODE = True
    FUNCTION = "evaluate"
    CATEGORY = "Efficiency Nodes/Simple Eval"

    def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0):
        # simple_eval doesn't require the result to be converted to a string
        result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c})
        int_result = int(result)
        float_result = float(result)
        string_result = str(result)
        if print_to_console == "True":
            print("\n\033[31mEvaluate Integers:\033[0m")
            print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m")
            print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str(
                float_result) + ", STRING: " + string_result + "\033[0m")
        return (int_result, float_result, string_result,)

# TSC Evaluate Floats (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateFloats:
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                    "python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}),
                    "print_to_console": (["False", "True"],),},
                "optional": {
                    "a": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),
                    "b": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),
                    "c": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),},
                }
    RETURN_TYPES = ("INT", "FLOAT", "STRING",)
    OUTPUT_NODE = True
    FUNCTION = "evaluate"
    CATEGORY = "Efficiency Nodes/Simple Eval"

    def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0):
        # simple_eval doesn't require the result to be converted to a string
        result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c})
        int_result = int(result)
        float_result = float(result)
        string_result = str(result)
        if print_to_console == "True":
            print("\n\033[31mEvaluate Floats:\033[0m")
            print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m")
            print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str(
                float_result) + ", STRING: " + string_result + "\033[0m")
        return (int_result, float_result, string_result,)

# TSC Evaluate Strings (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateStrs:
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": {
                    "python_expression": ("STRING", {"default": "a + b + c", "multiline": False}),
                    "print_to_console": (["False", "True"],)},
                "optional": {
                    "a": ("STRING", {"default": "Hello", "multiline": False}),
                    "b": ("STRING", {"default": " World", "multiline": False}),
                    "c": ("STRING", {"default": "!", "multiline": False}),}
                }
    RETURN_TYPES = ("STRING",)
    OUTPUT_NODE = True
    FUNCTION = "evaluate"
    CATEGORY = "Efficiency Nodes/Simple Eval"

    def evaluate(self, python_expression, print_to_console, a="", b="", c=""):
        variables = {'a': a, 'b': b, 'c': c}  # Define the variables for the expression
        functions = {"len": len}  # Define the functions for the expression
        result = simple_eval(python_expression, names=variables, functions=functions)
        if print_to_console == "True":
            print("\n\033[31mEvaluate Strings:\033[0m")
            print(f"\033[90ma = {a} \nb = {b} \nc = {c}\033[0m")
            print(f"{python_expression} = \033[92m" + str(result) + "\033[0m")
        return (str(result),)  # Convert result to a string before returning

# TSC Simple Eval Examples (https://github.com/danthedeckie/simpleeval)
class TSC_EvalExamples:
    filepath = os.path.join(my_dir, 'workflows', 'SimpleEval_Node_Examples.txt')
    with open(filepath, 'r') as file:
        examples = file.read()
    @classmethod
    def INPUT_TYPES(cls):
        return {"required": { "models_text": ("STRING", {"default": cls.examples ,"multiline": True}),},}
    RETURN_TYPES = ()
    CATEGORY = "Efficiency Nodes/Simple Eval"

# NODE MAPPING
NODE_CLASS_MAPPINGS = {
    "KSampler (Efficient)": TSC_KSampler,
    "Efficient Loader": TSC_EfficientLoader,
    "LoRA Stacker": TSC_LoRA_Stacker,
    "LoRA Stacker Adv.": TSC_LoRA_Stacker_Adv,
    "XY Plot": TSC_XYplot,
    "XY Input: Seeds++ Batch": TSC_XYplot_SeedsBatch,
    "XY Input: Steps": TSC_XYplot_Steps,
    "XY Input: CFG Scale": TSC_XYplot_CFG,
    "XY Input: Sampler": TSC_XYplot_Sampler,
    "XY Input: Scheduler": TSC_XYplot_Scheduler,
    "XY Input: Denoise": TSC_XYplot_Denoise,
    "XY Input: VAE": TSC_XYplot_VAE,
    "XY Input: Positive Prompt S/R": TSC_XYplot_PromptSR_Positive,
    "XY Input: Negative Prompt S/R": TSC_XYplot_PromptSR_Negative,
    "XY Input: Checkpoint": TSC_XYplot_Checkpoint,
    "XY Input: Clip Skip": TSC_XYplot_ClipSkip,
    "XY Input: LoRA": TSC_XYplot_LoRA,
    "XY Input: LoRA Adv.": TSC_XYplot_LoRA_Adv,
    "XY Input: LoRA Stacks": TSC_XYplot_LoRA_Stacks,
    "XY Input: Manual XY Entry": TSC_XYplot_Manual_XY_Entry,
    "Manual XY Entry Info": TSC_XYplot_Manual_XY_Entry_Info,
    "Join XY Inputs of Same Type": TSC_XYplot_JoinInputs,
    "Image Overlay": TSC_ImageOverlay,
    "Evaluate Integers": TSC_EvaluateInts,
    "Evaluate Floats": TSC_EvaluateFloats,
    "Evaluate Strings": TSC_EvaluateStrs,
    "Simple Eval Examples": TSC_EvalExamples
}