File size: 121,691 Bytes
d4f61a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 |
# Efficiency Nodes - A collection of my ComfyUI custom nodes to help streamline workflows and reduce total node count.
# by Luciano Cirino (Discord: TSC#9184) - April 2023
from comfy.sd import ModelPatcher, CLIP, VAE
from nodes import common_ksampler, CLIPSetLastLayer
from torch import Tensor
from PIL import Image, ImageOps, ImageDraw, ImageFont
from PIL.PngImagePlugin import PngInfo
import numpy as np
import torch
import ast
from pathlib import Path
import os
import sys
import subprocess
import json
import folder_paths
import psutil
# Get the absolute path of the parent directory of the current script
my_dir = os.path.dirname(os.path.abspath(__file__))
# Add the My directory path to the sys.path list
sys.path.append(my_dir)
# Construct the absolute path to the ComfyUI directory
comfy_dir = os.path.abspath(os.path.join(my_dir, '..', '..'))
# Add the ComfyUI directory path to the sys.path list
sys.path.append(comfy_dir)
# Construct the path to the font file
font_path = os.path.join(my_dir, 'arial.ttf')
# Import functions from ComfyUI
import comfy.samplers
import comfy.sd
import comfy.utils
# Import my util functions
from tsc_utils import *
MAX_RESOLUTION=8192
########################################################################################################################
# TSC Efficient Loader
class TSC_EfficientLoader:
@classmethod
def INPUT_TYPES(cls):
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"),),
"vae_name": (["Baked VAE"] + folder_paths.get_filename_list("vae"),),
"clip_skip": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"lora_name": (["None"] + folder_paths.get_filename_list("loras"),),
"lora_model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"positive": ("STRING", {"default": "Positive","multiline": True}),
"negative": ("STRING", {"default": "Negative", "multiline": True}),
"empty_latent_width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"empty_latent_height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 64})},
"optional": {"lora_stack": ("LORA_STACK", )},
"hidden": { "prompt": "PROMPT",
"my_unique_id": "UNIQUE_ID",},
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "CLIP", "DEPENDENCIES",)
RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "CLIP", "DEPENDENCIES", )
FUNCTION = "efficientloader"
CATEGORY = "Efficiency Nodes/Loaders"
def efficientloader(self, ckpt_name, vae_name, clip_skip, lora_name, lora_model_strength, lora_clip_strength,
positive, negative, empty_latent_width, empty_latent_height, batch_size, lora_stack=None,
prompt=None, my_unique_id=None):
model: ModelPatcher | None = None
clip: CLIP | None = None
vae: VAE | None = None
# Create Empty Latent
latent = torch.zeros([batch_size, 4, empty_latent_height // 8, empty_latent_width // 8]).cpu()
# Clean globally stored objects
globals_cleanup(prompt)
# Retrieve cache numbers
vae_cache, ckpt_cache, lora_cache = get_cache_numbers("Efficient Loader")
if lora_name != "None":
lora_params = [(lora_name, lora_model_strength, lora_clip_strength)]
if lora_stack is not None:
lora_params.extend(lora_stack)
model, clip = load_lora(lora_params, ckpt_name, my_unique_id, cache=lora_cache, ckpt_cache=ckpt_cache, cache_overwrite=True)
if vae_name == "Baked VAE":
vae = get_bvae_by_ckpt_name(ckpt_name)
else:
model, clip, vae = load_checkpoint(ckpt_name, my_unique_id, cache=ckpt_cache, cache_overwrite=True)
lora_params = None
# Check for custom VAE
if vae_name != "Baked VAE":
vae = load_vae(vae_name, my_unique_id, cache=vae_cache, cache_overwrite=True)
# Debugging
###print_loaded_objects_entries()
# CLIP skip
if not clip:
raise Exception("No CLIP found")
clip = clip.clone()
clip.clip_layer(clip_skip)
# Data for XY Plot
dependencies = (vae_name, ckpt_name, clip, clip_skip, positive, negative, lora_params)
return (model, [[clip.encode(positive), {}]], [[clip.encode(negative), {}]], {"samples":latent}, vae, clip, dependencies, )
########################################################################################################################
# TSC LoRA Stacker
class TSC_LoRA_Stacker:
loras = ["None"] + folder_paths.get_filename_list("loras")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"lora_name_1": (cls.loras,),
"lora_wt_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_2": (cls.loras,),
"lora_wt_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_3": (cls.loras,),
"lora_wt_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})},
"optional": {"lora_stack": ("LORA_STACK",)},
}
RETURN_TYPES = ("LORA_STACK",)
RETURN_NAMES = ("LORA_STACK",)
FUNCTION = "lora_stacker"
CATEGORY = "Efficiency Nodes/Misc"
def lora_stacker(self, lora_name_1, lora_wt_1, lora_name_2, lora_wt_2, lora_name_3, lora_wt_3, lora_stack=None):
# Create a list of tuples using provided parameters, exclude tuples with lora_name as "None"
loras = [(lora_name, lora_wt, lora_wt) for lora_name, lora_wt, lora_wt in
[(lora_name_1, lora_wt_1, lora_wt_1),
(lora_name_2, lora_wt_2, lora_wt_2),
(lora_name_3, lora_wt_3, lora_wt_3)]
if lora_name != "None"]
# If lora_stack is not None, extend the loras list with lora_stack
if lora_stack is not None:
loras.extend([l for l in lora_stack if l[0] != "None"])
return (loras,)
# TSC LoRA Stacker Advanced
class TSC_LoRA_Stacker_Adv:
loras = ["None"] + folder_paths.get_filename_list("loras")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"lora_name_1": (cls.loras,),
"model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_2": (cls.loras,),
"model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_3": (cls.loras,),
"model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})},
"optional": {"lora_stack": ("LORA_STACK",)},
}
RETURN_TYPES = ("LORA_STACK",)
RETURN_NAMES = ("LORA_STACK",)
FUNCTION = "lora_stacker"
CATEGORY = "Efficiency Nodes/Misc"
def lora_stacker(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2,
lora_name_3, model_str_3, clip_str_3, lora_stack=None):
# Create a list of tuples using provided parameters, exclude tuples with lora_name as "None"
loras = [(lora_name, model_str, clip_str) for lora_name, model_str, clip_str in
[(lora_name_1, model_str_1, clip_str_1),
(lora_name_2, model_str_2, clip_str_2),
(lora_name_3, model_str_3, clip_str_3)]
if lora_name != "None"]
# If lora_stack is not None, extend the loras list with lora_stack
if lora_stack is not None:
loras.extend([l for l in lora_stack if l[0] != "None"])
return (loras,)
########################################################################################################################
# TSC KSampler (Efficient)
class TSC_KSampler:
empty_image = pil2tensor(Image.new('RGBA', (1, 1), (0, 0, 0, 0)))
def __init__(self):
self.output_dir = os.path.join(comfy_dir, 'temp')
self.type = "temp"
@classmethod
def INPUT_TYPES(cls):
return {"required":
{"sampler_state": (["Sample", "Hold", "Script"], ),
"model": ("MODEL",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
"cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"sampler_name": (comfy.samplers.KSampler.SAMPLERS,),
"scheduler": (comfy.samplers.KSampler.SCHEDULERS,),
"positive": ("CONDITIONING",),
"negative": ("CONDITIONING",),
"latent_image": ("LATENT",),
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"preview_image": (["Disabled", "Enabled", "Output Only"],),
},
"optional": { "optional_vae": ("VAE",),
"script": ("SCRIPT",),},
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO", "my_unique_id": "UNIQUE_ID",},
}
RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING", "LATENT", "VAE", "IMAGE", )
RETURN_NAMES = ("MODEL", "CONDITIONING+", "CONDITIONING-", "LATENT", "VAE", "IMAGE", )
OUTPUT_NODE = True
FUNCTION = "sample"
CATEGORY = "Efficiency Nodes/Sampling"
def sample(self, sampler_state, model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
latent_image, preview_image, denoise=1.0, prompt=None, extra_pnginfo=None, my_unique_id=None,
optional_vae=(None,), script=None):
# Extract node_settings from json
def get_settings():
# Get the directory path of the current file
my_dir = os.path.dirname(os.path.abspath(__file__))
# Construct the file path for node_settings.json
settings_file = os.path.join(my_dir, 'node_settings.json')
# Load the settings from the JSON file
with open(settings_file, 'r') as file:
node_settings = json.load(file)
# Retrieve the settings
kse_vae_tiled = node_settings.get("KSampler (Efficient)", {}).get('vae_tiled', False)
xy_vae_tiled = node_settings.get("XY Plot", {}).get('vae_tiled', False)
return kse_vae_tiled, xy_vae_tiled
kse_vae_tiled, xy_vae_tiled = get_settings()
# Functions for previewing images in Ksampler
def map_filename(filename):
prefix_len = len(os.path.basename(filename_prefix))
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
def compute_vars(input):
input = input.replace("%width%", str(images[0].shape[1]))
input = input.replace("%height%", str(images[0].shape[0]))
return input
def preview_images(images, filename_prefix):
filename_prefix = compute_vars(filename_prefix)
subfolder = os.path.dirname(os.path.normpath(filename_prefix))
filename = os.path.basename(os.path.normpath(filename_prefix))
full_output_folder = os.path.join(self.output_dir, subfolder)
try:
counter = max(filter(lambda a: a[1][:-1] == filename and a[1][-1] == "_",
map(map_filename, os.listdir(full_output_folder))))[0] + 1
except ValueError:
counter = 1
except FileNotFoundError:
os.makedirs(full_output_folder, exist_ok=True)
counter = 1
if not os.path.exists(self.output_dir):
os.makedirs(self.output_dir)
results = list()
for image in images:
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = PngInfo()
if prompt is not None:
metadata.add_text("prompt", json.dumps(prompt))
if extra_pnginfo is not None:
for x in extra_pnginfo:
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
file = f"{filename}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
results.append({
"filename": file,
"subfolder": subfolder,
"type": self.type
});
counter += 1
return results
def get_value_by_id(key: str, my_unique_id):
global last_helds
for value, id_ in last_helds[key]:
if id_ == my_unique_id:
return value
return None
def update_value_by_id(key: str, my_unique_id, new_value):
global last_helds
for i, (value, id_) in enumerate(last_helds[key]):
if id_ == my_unique_id:
last_helds[key][i] = (new_value, id_)
return True
last_helds[key].append((new_value, my_unique_id))
return True
# Clean globally stored objects of non-existant nodes
globals_cleanup(prompt)
# Convert ID string to an integer
my_unique_id = int(my_unique_id)
# Vae input check
vae = optional_vae
if vae == (None,):
print('\033[33mKSampler(Efficient) Warning:\033[0m No vae input detected, preview and output image disabled.\n')
preview_image = "Disabled"
# Init last_results
if get_value_by_id("results", my_unique_id) is None:
last_results = list()
else:
last_results = get_value_by_id("results", my_unique_id)
# Init last_latent
if get_value_by_id("latent", my_unique_id) is None:
last_latent = latent_image
else:
last_latent = {"samples": None}
last_latent["samples"] = get_value_by_id("latent", my_unique_id)
# Init last_images
if get_value_by_id("images", my_unique_id) == None:
last_images = TSC_KSampler.empty_image
else:
last_images = get_value_by_id("images", my_unique_id)
# Initialize latent
latent: Tensor|None = None
# Define filename_prefix
filename_prefix = "KSeff_{:02d}".format(my_unique_id)
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# Check the current sampler state
if sampler_state == "Sample":
# Sample using the common KSampler function and store the samples
samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
latent_image, denoise=denoise)
# Extract the latent samples from the returned samples dictionary
latent = samples[0]["samples"]
# Store the latent samples in the 'last_helds' dictionary with a unique ID
update_value_by_id("latent", my_unique_id, latent)
# If not in preview mode, return the results in the specified format
if preview_image == "Disabled":
# Enable vae decode on next Hold
update_value_by_id("vae_decode", my_unique_id, True)
return {"ui": {"images": list()},
"result": (model, positive, negative, {"samples": latent}, vae, TSC_KSampler.empty_image,)}
else:
# Decode images and store
if kse_vae_tiled == False:
images = vae.decode(latent).cpu()
else:
images = vae.decode_tiled(latent).cpu()
update_value_by_id("images", my_unique_id, images)
# Disable vae decode on next Hold
update_value_by_id("vae_decode", my_unique_id, False)
# Generate image results and store
results = preview_images(images, filename_prefix)
update_value_by_id("results", my_unique_id, results)
# Determine what the 'images' value should be
images_value = list() if preview_image == "Output Only" else results
# Output image results to ui and node outputs
return {"ui": {"images": images_value},
"result": (model, positive, negative, {"samples": latent}, vae, images,)}
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# If the sampler state is "Hold"
elif sampler_state == "Hold":
# If not in preview mode, return the results in the specified format
if preview_image == "Disabled":
return {"ui": {"images": list()},
"result": (model, positive, negative, last_latent, vae, TSC_KSampler.empty_image,)}
else:
latent = last_latent["samples"]
if get_value_by_id("vae_decode", my_unique_id) == True:
# Decode images and store
if kse_vae_tiled == False:
images = vae.decode(latent).cpu()
else:
images = vae.decode_tiled(latent).cpu()
update_value_by_id("images", my_unique_id, images)
# Disable vae decode on next Hold
update_value_by_id("vae_decode", my_unique_id, False)
# Generate image results and store
results = preview_images(images, filename_prefix)
update_value_by_id("results", my_unique_id, results)
else:
images = last_images
results = last_results
# Determine what the 'images' value should be
images_value = list() if preview_image == "Output Only" else results
# Output image results to ui and node outputs
return {"ui": {"images": images_value},
"result": (model, positive, negative, {"samples": latent}, vae, images,)}
# ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
elif sampler_state == "Script":
# Store name of connected node to script input
script_node_name, script_node_id = extract_node_info(prompt, my_unique_id, 'script')
# If no valid script input connected, error out
if script == None or script == (None,) or script_node_name!="XY Plot":
if script_node_name!="XY Plot":
print('\033[31mKSampler(Efficient) Error:\033[0m No valid script input detected')
return {"ui": {"images": list()},
"result": (model, positive, negative, last_latent, vae, last_images,)}
# If no vae connected, throw errors
if vae == (None,):
print('\033[31mKSampler(Efficient) Error:\033[0m VAE must be connected to use Script mode.')
return {"ui": {"images": list()},
"result": (model, positive, negative, last_latent, vae, last_images,)}
# If preview_image set to disabled, run script anyways with message
if preview_image == "Disabled":
print('\033[33mKSampler(Efficient) Warning:\033[0m The preview image cannot be disabled when running'
' the XY Plot script, proceeding as if it was enabled.\n')
# Extract the 'samples' tensor and split it into individual image tensors
image_tensors = torch.split(latent_image['samples'], 1, dim=0)
# Get the shape of the first image tensor
shape = image_tensors[0].shape
# Extract the original height and width
latent_height, latent_width = shape[2] * 8, shape[3] * 8
# Set latent only to the first latent of batch
latent_image = {'samples': image_tensors[0]}
#___________________________________________________________________________________________________________
# Initialize, unpack, and clean variables for the XY Plot script
if script_node_name == "XY Plot":
# Initialize variables
vae_name = None
ckpt_name = None
clip = None
lora_params = None
positive_prompt = None
negative_prompt = None
clip_skip = None
# Unpack script Tuple (X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, dependencies)
X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models, xyplot_as_output_image,\
flip_xy, dependencies = script
# Unpack Effficient Loader dependencies
if dependencies is not None:
vae_name, ckpt_name, clip, clip_skip, positive_prompt, negative_prompt, lora_params = dependencies
# Helper function to process printout values
def process_xy_for_print(value, replacement, type_):
if isinstance(value, tuple) and type_ == "Scheduler":
return value[0] # Return only the first entry of the tuple
elif isinstance(value, tuple):
return tuple(replacement if v is None else v for v in value)
else:
return replacement if value is None else value
# Determine the replacements based on X_type and Y_type
replacement_X = scheduler if X_type == 'Sampler' else clip_skip if X_type == 'Checkpoint' else None
replacement_Y = scheduler if Y_type == 'Sampler' else clip_skip if Y_type == 'Checkpoint' else None
# Process X_value and Y_value
X_value_processed = [process_xy_for_print(v, replacement_X, X_type) for v in X_value]
Y_value_processed = [process_xy_for_print(v, replacement_Y, Y_type) for v in Y_value]
# Print XY Plot Inputs
print("-" * 40)
print("XY Plot Script Inputs:")
print(f"(X) {X_type}: {X_value_processed}")
print(f"(Y) {Y_type}: {Y_value_processed}")
print("-" * 40)
# If not caching models, set to 1.
if cache_models == "False":
vae_cache = ckpt_cache = lora_cache = 1
else:
# Retrieve cache numbers
vae_cache, ckpt_cache, lora_cache = get_cache_numbers("XY Plot")
# Pack cache numbers in a tuple
cache = (vae_cache, ckpt_cache, lora_cache)
# Embedd original prompts into prompt variables
positive_prompt = (positive_prompt, positive_prompt)
negative_prompt = (negative_prompt, negative_prompt)
#_______________________________________________________________________________________________________
#The below code will clean from the cache any ckpt/vae/lora models it will not be reusing.
# Map the type names to the dictionaries
dict_map = {"VAE": [], "Checkpoint": [], "LoRA": []}
# Create a list of tuples with types and values
type_value_pairs = [(X_type, X_value), (Y_type, Y_value)]
# Iterate over type-value pairs
for t, v in type_value_pairs:
if t in dict_map:
# Flatten the list of lists of tuples if the type is "LoRA"
if t == "LoRA":
dict_map[t] = [item for sublist in v for item in sublist]
else:
dict_map[t] = v
ckpt_dict = [t[0] for t in dict_map.get("Checkpoint", [])] if dict_map.get("Checkpoint", []) else []
lora_dict = [[t,] for t in dict_map.get("LoRA", [])] if dict_map.get("LoRA", []) else []
# If both ckpt_dict and lora_dict are not empty, manipulate lora_dict as described
if ckpt_dict and lora_dict:
lora_dict = [(lora_params, ckpt) for ckpt in ckpt_dict for lora_params in lora_dict]
# If lora_dict is not empty and ckpt_dict is empty, insert ckpt_name into each tuple in lora_dict
elif lora_dict:
lora_dict = [(lora_params, ckpt_name) for lora_params in lora_dict]
vae_dict = dict_map.get("VAE", [])
# prioritize Caching Checkpoints over LoRAs but not both.
if X_type == "LoRA":
ckpt_dict = []
if X_type == "Checkpoint":
lora_dict = []
# Print dict_arrays for debugging
###print(f"vae_dict={vae_dict}\nckpt_dict={ckpt_dict}\nlora_dict={lora_dict}")
# Clean values that won't be reused
clear_cache_by_exception(script_node_id, vae_dict=vae_dict, ckpt_dict=ckpt_dict, lora_dict=lora_dict)
# Print loaded_objects for debugging
###print_loaded_objects_entries()
#_______________________________________________________________________________________________________
# Function that changes appropiate variables for next processed generations (also generates XY_labels)
def define_variable(var_type, var, seed, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
clip_skip, positive_prompt, negative_prompt, lora_params, var_label, num_label):
# Define default max label size limit
max_label_len = 36
# If var_type is "Seeds++ Batch", update var and seed, and generate labels
if var_type == "Seeds++ Batch":
text = f"Seed: {seed}"
# If var_type is "Steps", update steps and generate labels
elif var_type == "Steps":
steps = var
text = f"steps: {steps}"
# If var_type is "CFG Scale", update cfg and generate labels
elif var_type == "CFG Scale":
cfg = var
text = f"CFG: {round(cfg,2)}"
# If var_type is "Sampler", update sampler_name, scheduler, and generate labels
elif var_type == "Sampler":
sampler_name = var[0]
if var[1] == "":
text = f"{sampler_name}"
else:
if var[1] != None:
scheduler = (var[1], scheduler[1])
else:
scheduler = (scheduler[1], scheduler[1])
text = f"{sampler_name} ({scheduler[0]})"
text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp")
# If var_type is "Scheduler", update scheduler and generate labels
elif var_type == "Scheduler":
if len(var) == 2:
scheduler = (var[0], scheduler[1])
text = f"{sampler_name} ({scheduler[0]})"
else:
scheduler = (var, scheduler[1])
text = f"{scheduler[0]}"
text = text.replace("ancestral", "a").replace("uniform", "u").replace("exponential","exp")
# If var_type is "Denoise", update denoise and generate labels
elif var_type == "Denoise":
denoise = var
text = f"denoise: {round(denoise, 2)}"
# If var_type is "VAE", update vae_name and generate labels
elif var_type == "VAE":
vae_name = var
vae_filename = os.path.splitext(os.path.basename(vae_name))[0]
text = f"VAE: {vae_filename}"
# If var_type is "Positive Prompt S/R", update positive_prompt and generate labels
elif var_type == "Positive Prompt S/R":
search_txt, replace_txt = var
if replace_txt != None:
positive_prompt = (positive_prompt[1].replace(search_txt, replace_txt, 1), positive_prompt[1])
else:
positive_prompt = (positive_prompt[1], positive_prompt[1])
replace_txt = search_txt
text = f"{replace_txt}"
# If var_type is "Negative Prompt S/R", update negative_prompt and generate labels
elif var_type == "Negative Prompt S/R":
search_txt, replace_txt = var
if replace_txt:
negative_prompt = (negative_prompt[1].replace(search_txt, replace_txt, 1), negative_prompt[1])
else:
negative_prompt = (negative_prompt[1], negative_prompt[1])
replace_txt = search_txt
text = f"(-) {replace_txt}"
# If var_type is "Checkpoint", update model and clip (if needed) and generate labels
elif var_type == "Checkpoint":
ckpt_name = var[0]
if var[1] == None:
clip_skip = (clip_skip[1],clip_skip[1])
else:
clip_skip = (var[1],clip_skip[1])
ckpt_filename = os.path.splitext(os.path.basename(ckpt_name))[0]
text = f"{ckpt_filename}"
elif var_type == "Clip Skip":
clip_skip = (var, clip_skip[1])
text = f"Clip Skip ({clip_skip[0]})"
elif var_type == "LoRA":
lora_params = var
max_label_len = 30 + (12 * (len(lora_params)-1))
if len(lora_params) == 1:
lora_name, lora_model_wt, lora_clip_wt = lora_params[0]
lora_filename = os.path.splitext(os.path.basename(lora_name))[0]
lora_model_wt = format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.')
lora_clip_wt = format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.')
lora_filename = lora_filename[:max_label_len - len(f"LoRA: ({lora_model_wt})")]
if lora_model_wt == lora_clip_wt:
text = f"LoRA: {lora_filename}({lora_model_wt})"
else:
text = f"LoRA: {lora_filename}({lora_model_wt},{lora_clip_wt})"
elif len(lora_params) > 1:
lora_filenames = [os.path.splitext(os.path.basename(lora_name))[0] for lora_name, _, _ in lora_params]
lora_details = [(format(float(lora_model_wt), ".2f").rstrip('0').rstrip('.'),
format(float(lora_clip_wt), ".2f").rstrip('0').rstrip('.')) for _, lora_model_wt, lora_clip_wt in lora_params]
non_name_length = sum(len(f"({lora_details[i][0]},{lora_details[i][1]})") + 2 for i in range(len(lora_params)))
available_space = max_label_len - non_name_length
max_name_length = available_space // len(lora_params)
lora_filenames = [filename[:max_name_length] for filename in lora_filenames]
text_elements = [f"{lora_filename}({lora_details[i][0]})" if lora_details[i][0] == lora_details[i][1] else f"{lora_filename}({lora_details[i][0]},{lora_details[i][1]})" for i, lora_filename in enumerate(lora_filenames)]
text = " ".join(text_elements)
def truncate_texts(texts, num_label, max_label_len):
truncate_length = max(min(max(len(text) for text in texts), max_label_len), 24)
return [text if len(text) <= truncate_length else text[:truncate_length] + "..." for text in
texts]
# Add the generated text to var_label if it's not full
if len(var_label) < num_label:
var_label.append(text)
# If var_type VAE , truncate entries in the var_label list when it's full
if len(var_label) == num_label and (var_type == "VAE" or var_type == "Checkpoint" or var_type == "LoRA"):
var_label = truncate_texts(var_label, num_label, max_label_len)
# Return the modified variables
return steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, \
positive_prompt, negative_prompt, lora_params, var_label
# _______________________________________________________________________________________________________
# The function below is used to smartly load Checkpoint/LoRA/VAE models between generations.
def define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip, vae,
vae_name, ckpt_name, lora_params, index, types, script_node_id, cache):
# Encode prompt and apply clip_skip. Return new conditioning.
def encode_prompt(positive_prompt, negative_prompt, clip, clip_skip):
clip = CLIPSetLastLayer().set_last_layer(clip, clip_skip)[0]
return [[clip.encode(positive_prompt), {}]], [[clip.encode(negative_prompt), {}]]
# Variable to track wether to encode prompt or not
encode = False
# Unpack types tuple
X_type, Y_type = types
# Note: Index is held at 0 when Y_type == "Nothing"
# Load VAE if required
if (X_type == "VAE" and index == 0) or Y_type == "VAE":
vae = load_vae(vae_name, script_node_id, cache=cache[0])
# Load Checkpoint if required. If Y_type is LoRA, required models will be loaded by load_lora func.
if (X_type == "Checkpoint" and index == 0 and Y_type != "LoRA"):
if lora_params is None:
model, clip, _ = load_checkpoint(ckpt_name, script_node_id, output_vae=False, cache=cache[1])
else: # Load Efficient Loader LoRA
model, clip = load_lora(lora_params, ckpt_name, script_node_id,
cache=None, ckpt_cache=cache[1])
encode = True
# Load LoRA if required
elif (X_type == "LoRA" and index == 0):
# Don't cache Checkpoints
model, clip = load_lora(lora_params, ckpt_name, script_node_id, cache=cache[2])
encode = True
elif Y_type == "LoRA": # X_type must be Checkpoint, so cache those as defined
model, clip = load_lora(lora_params, ckpt_name, script_node_id,
cache=None, ckpt_cache=cache[1])
encode = True
# Encode Prompt if required
prompt_types = ["Positive Prompt S/R", "Negative Prompt S/R", "Clip Skip"]
if (X_type in prompt_types and index == 0) or Y_type in prompt_types:
encode = True
# Encode prompt if needed
if encode == True:
positive, negative = encode_prompt(positive_prompt[0], negative_prompt[0], clip, clip_skip)
return model, positive, negative, vae
# ______________________________________________________________________________________________________
# The below function is used to generate the results based on all the processed variables
def process_values(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
denoise, vae, latent_list=[], image_tensor_list=[], image_pil_list=[]):
# Sample
samples = common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative,
latent_image, denoise=denoise)
# Decode images and store
latent = samples[0]["samples"]
# Add the latent tensor to the tensors list
latent_list.append(latent)
# Decode the latent tensor
if xy_vae_tiled == False:
image = vae.decode(latent).cpu()
else:
image = vae.decode_tiled(latent).cpu()
# Add the resulting image tensor to image_tensor_list
image_tensor_list.append(image)
# Convert the image from tensor to PIL Image and add it to the image_pil_list
image_pil_list.append(tensor2pil(image))
# Return the touched variables
return latent_list, image_tensor_list, image_pil_list
# ______________________________________________________________________________________________________
# The below section is the heart of the XY Plot image generation
# Initiate Plot label text variables X/Y_label
X_label = []
Y_label = []
# Seed_updated for "Seeds++ Batch" incremental seeds
seed_updated = seed
# Store the KSamplers original scheduler inside the same scheduler variable
scheduler = (scheduler, scheduler)
# Store the Eff Loaders original clip_skip inside the same clip_skip variable
clip_skip = (clip_skip, clip_skip)
# Store types in a Tuple for easy function passing
types = (X_type, Y_type)
# Fill Plot Rows (X)
for X_index, X in enumerate(X_value):
# Seed control based on loop index during Batch
if X_type == "Seeds++ Batch":
# Update seed based on the inner loop index
seed_updated = seed + X_index
# Define X parameters and generate labels
steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, \
lora_params, X_label = \
define_variable(X_type, X, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
clip_skip, positive_prompt, negative_prompt, lora_params, X_label, len(X_value))
if X_type != "Nothing" and Y_type == "Nothing":
# Models & Conditionings
model, positive, negative , vae = \
define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae,
vae_name, ckpt_name, lora_params, 0, types, script_node_id, cache)
# Generate Results
latent_list, image_tensor_list, image_pil_list = \
process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0],
positive, negative, latent_image, denoise, vae)
elif X_type != "Nothing" and Y_type != "Nothing":
# Seed control based on loop index during Batch
for Y_index, Y in enumerate(Y_value):
if Y_type == "Seeds++ Batch":
# Update seed based on the inner loop index
seed_updated = seed + Y_index
# Define Y parameters and generate labels
steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name, clip_skip, positive_prompt, negative_prompt, lora_params, Y_label = \
define_variable(Y_type, Y, seed_updated, steps, cfg, sampler_name, scheduler, denoise, vae_name, ckpt_name,
clip_skip, positive_prompt, negative_prompt, lora_params, Y_label, len(Y_value))
# Models & Conditionings
model, positive, negative, vae = \
define_model(model, clip, positive, negative, positive_prompt, negative_prompt, clip_skip[0], vae,
vae_name, ckpt_name, lora_params, Y_index, types, script_node_id, cache)
# Generate Results
latent_list, image_tensor_list, image_pil_list = \
process_values(model, seed_updated, steps, cfg, sampler_name, scheduler[0],
positive, negative, latent_image, denoise, vae)
# Clean up cache
if cache_models == "False":
clear_cache_by_exception(script_node_id, vae_dict=[], ckpt_dict=[], lora_dict=[])
#
else:
# Prioritrize Caching Checkpoints over LoRAs.
if X_type == "LoRA":
clear_cache_by_exception(script_node_id, ckpt_dict=[])
elif X_type == "Checkpoint":
clear_cache_by_exception(script_node_id, lora_dict=[])
# ______________________________________________________________________________________________________
def print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params,
vae_name, clip_skip, steps, cfg, sampler_name, scheduler, denoise,
num_rows, num_cols, latent_height, latent_width):
print("-" * 40) # Print an empty line followed by a separator line
print("\033[32mXY Plot Results:\033[0m")
def get_vae_name(X_type, Y_type, X_value, Y_value, vae_name):
if X_type == "VAE":
vae_name = ", ".join(map(lambda x: os.path.splitext(os.path.basename(str(x)))[0], X_value))
elif Y_type == "VAE":
vae_name = ", ".join(map(lambda y: os.path.splitext(os.path.basename(str(y)))[0], Y_value))
else:
vae_name = os.path.splitext(os.path.basename(str(vae_name)))[0]
return vae_name
def get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip):
if X_type == "Clip Skip":
clip_skip = ", ".join(map(str, X_value))
elif Y_type == "Clip Skip":
clip_skip = ", ".join(map(str, Y_value))
else:
clip_skip = clip_skip[1]
return clip_skip
def get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip):
if ckpt_type == "Checkpoint":
if clip_skip_type == "Clip Skip":
ckpt_name = ", ".join([os.path.splitext(os.path.basename(str(ckpt[0])))[0] for ckpt in ckpt_values])
else:
ckpt_name = ", ".join([f"{os.path.splitext(os.path.basename(str(ckpt[0])))[0]}({str(ckpt[1]) if ckpt[1] is not None else str(clip_skip_values)})"
for ckpt in ckpt_values])
clip_skip = "_"
else:
ckpt_name = os.path.splitext(os.path.basename(str(ckpt_name)))[0]
return ckpt_name, clip_skip
def get_lora_name(X_type, Y_type, X_value, Y_value, lora_params=None):
if X_type != "LoRA" and Y_type != "LoRA":
if lora_params:
return f"[{', '.join([f'{os.path.splitext(os.path.basename(name))[0]}({round(model_wt, 3)},{round(clip_wt, 3)})' for name, model_wt, clip_wt in lora_params])}]"
else:
return None
else:
return get_lora_sublist_name(X_type,
X_value) if X_type == "LoRA" else get_lora_sublist_name(Y_type, Y_value) if Y_type == "LoRA" else None
def get_lora_sublist_name(lora_type, lora_value):
return ", ".join([
f"[{', '.join([f'{os.path.splitext(os.path.basename(str(x[0])))[0]}({round(x[1], 3)},{round(x[2], 3)})' for x in sublist])}]"
for sublist in lora_value])
# use these functions:
ckpt_type, clip_skip_type = (X_type, Y_type) if X_type in ["Checkpoint", "Clip Skip"] else (Y_type, X_type)
ckpt_values, clip_skip_values = (X_value, Y_value) if X_type in ["Checkpoint", "Clip Skip"] else (Y_value, X_value)
clip_skip = get_clip_skip(X_type, Y_type, X_value, Y_value, clip_skip)
ckpt_name, clip_skip = get_checkpoint_name(ckpt_type, ckpt_values, clip_skip_type, clip_skip_values, ckpt_name, clip_skip)
vae_name = get_vae_name(X_type, Y_type, X_value, Y_value, vae_name)
lora_name = get_lora_name(X_type, Y_type, X_value, Y_value, lora_params)
seed_list = [seed + x for x in X_value] if X_type == "Seeds++ Batch" else\
[seed + y for y in Y_value] if Y_type == "Seeds++ Batch" else [seed]
seed = ", ".join(map(str, seed_list))
steps = ", ".join(map(str, X_value)) if X_type == "Steps" else ", ".join(
map(str, Y_value)) if Y_type == "Steps" else steps
cfg = ", ".join(map(str, X_value)) if X_type == "CFG Scale" else ", ".join(
map(str, Y_value)) if Y_type == "CFG Scale" else cfg
if X_type == "Sampler":
if Y_type == "Scheduler":
sampler_name = ", ".join([f"{x[0]}" for x in X_value])
scheduler = ", ".join([f"{y}" for y in Y_value])
else:
sampler_name = ", ".join(
[f"{x[0]}({x[1] if x[1] != '' and x[1] is not None else scheduler[1]})" for x in X_value])
scheduler = "_"
elif Y_type == "Sampler":
if X_type == "Scheduler":
sampler_name = ", ".join([f"{y[0]}" for y in Y_value])
scheduler = ", ".join([f"{x}" for x in X_value])
else:
sampler_name = ", ".join(
[f"{y[0]}({y[1] if y[1] != '' and y[1] is not None else scheduler[1]})" for y in Y_value])
scheduler = "_"
else:
scheduler = ", ".join([str(x[0]) if isinstance(x, tuple) else str(x) for x in X_value]) if X_type == "Scheduler" else \
", ".join([str(y[0]) if isinstance(y, tuple) else str(y) for y in Y_value]) if Y_type == "Scheduler" else scheduler[0]
denoise = ", ".join(map(str, X_value)) if X_type == "Denoise" else ", ".join(
map(str, Y_value)) if Y_type == "Denoise" else denoise
# Printouts
print(f"img_count: {len(X_value)*len(Y_value)}")
print(f"img_dims: {latent_height} x {latent_width}")
print(f"plot_dim: {num_cols} x {num_rows}")
if clip_skip == "_":
print(f"ckpt(clipskip): {ckpt_name if ckpt_name is not None else ''}")
else:
print(f"ckpt: {ckpt_name if ckpt_name is not None else ''}")
print(f"clip_skip: {clip_skip if clip_skip is not None else ''}")
if lora_name:
print(f"lora(mod,clip): {lora_name if lora_name is not None else ''}")
print(f"vae: {vae_name if vae_name is not None else ''}")
print(f"seed: {seed}")
print(f"steps: {steps}")
print(f"cfg: {cfg}")
if scheduler == "_":
print(f"sampler(schr): {sampler_name}")
else:
print(f"sampler: {sampler_name}")
print(f"scheduler: {scheduler}")
print(f"denoise: {denoise}")
if X_type == "Positive Prompt S/R" or Y_type == "Positive Prompt S/R":
positive_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate(
X_value)]) if X_type == "Positive Prompt S/R" else ", ".join(
[str(y[0]) if i == 0 else str(y[1]) for i, y in
enumerate(Y_value)]) if Y_type == "Positive Prompt S/R" else positive_prompt
print(f"+prompt_s/r: {positive_prompt}")
if X_type == "Negative Prompt S/R" or Y_type == "Negative Prompt S/R":
negative_prompt = ", ".join([str(x[0]) if i == 0 else str(x[1]) for i, x in enumerate(
X_value)]) if X_type == "Negative Prompt S/R" else ", ".join(
[str(y[0]) if i == 0 else str(y[1]) for i, y in
enumerate(Y_value)]) if Y_type == "Negative Prompt S/R" else negative_prompt
print(f"-prompt_s/r: {negative_prompt}")
# ______________________________________________________________________________________________________
def adjusted_font_size(text, initial_font_size, latent_width):
font = ImageFont.truetype(str(Path(font_path)), initial_font_size)
text_width = font.getlength(text)
if text_width > (latent_width * 0.9):
scaling_factor = 0.9 # A value less than 1 to shrink the font size more aggressively
new_font_size = int(initial_font_size * (latent_width / text_width) * scaling_factor)
else:
new_font_size = initial_font_size
return new_font_size
# ______________________________________________________________________________________________________
# Disable vae decode on next Hold
update_value_by_id("vae_decode", my_unique_id, False)
def rearrange_list_A(arr, num_cols, num_rows):
new_list = []
for i in range(num_rows):
for j in range(num_cols):
index = j * num_rows + i
new_list.append(arr[index])
return new_list
def rearrange_list_B(arr, num_rows, num_cols):
new_list = []
for i in range(num_rows):
for j in range(num_cols):
index = i * num_cols + j
new_list.append(arr[index])
return new_list
# Extract plot dimensions
num_rows = max(len(Y_value) if Y_value is not None else 0, 1)
num_cols = max(len(X_value) if X_value is not None else 0, 1)
# Flip X & Y results back if flipped earlier (for Checkpoint/LoRA For loop optimizations)
if flip_xy == True:
X_type, Y_type = Y_type, X_type
X_value, Y_value = Y_value, X_value
X_label, Y_label = Y_label, X_label
num_rows, num_cols = num_cols, num_rows
image_pil_list = rearrange_list_A(image_pil_list, num_rows, num_cols)
else:
image_pil_list = rearrange_list_B(image_pil_list, num_rows, num_cols)
image_tensor_list = rearrange_list_A(image_tensor_list, num_cols, num_rows)
latent_list = rearrange_list_A(latent_list, num_cols, num_rows)
# Print XY Plot Results
print_plot_variables(X_type, Y_type, X_value, Y_value, seed, ckpt_name, lora_params, vae_name,
clip_skip, steps, cfg, sampler_name, scheduler, denoise,
num_rows, num_cols, latent_height, latent_width)
# Concatenate the tensors along the first dimension (dim=0)
latent_list = torch.cat(latent_list, dim=0)
# Store latent_list as last latent
update_value_by_id("latent", my_unique_id, latent_list)
# Calculate the dimensions of the white background image
border_size_top = latent_width // 15
# Longest Y-label length
if len(Y_label) > 0:
Y_label_longest = max(len(s) for s in Y_label)
else:
# Handle the case when the sequence is empty
Y_label_longest = 0 # or any other appropriate value
Y_label_scale = min(Y_label_longest + 4,24) / 24
if Y_label_orientation == "Vertical":
border_size_left = border_size_top
else: # Assuming Y_label_orientation is "Horizontal"
# border_size_left is now min(latent_width, latent_height) plus 20% of the difference between the two
border_size_left = min(latent_width, latent_height) + int(0.2 * abs(latent_width - latent_height))
border_size_left = int(border_size_left * Y_label_scale)
# Modify the border size, background width and x_offset initialization based on Y_type and Y_label_orientation
if Y_type == "Nothing":
bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing
x_offset_initial = 0
else:
if Y_label_orientation == "Vertical":
bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + 3 * border_size_left
x_offset_initial = border_size_left * 3
else: # Assuming Y_label_orientation is "Horizontal"
bg_width = num_cols * latent_width + (num_cols - 1) * grid_spacing + border_size_left
x_offset_initial = border_size_left
# Modify the background height based on X_type
if X_type == "Nothing":
bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing
y_offset = 0
else:
bg_height = num_rows * latent_height + (num_rows - 1) * grid_spacing + 3 * border_size_top
y_offset = border_size_top * 3
# Create the white background image
background = Image.new('RGBA', (int(bg_width), int(bg_height)), color=(255, 255, 255, 255))
for row in range(num_rows):
# Initialize the X_offset
x_offset = x_offset_initial
for col in range(num_cols):
# Calculate the index for image_pil_list
index = col * num_rows + row
img = image_pil_list[index]
# Paste the image
background.paste(img, (x_offset, y_offset))
if row == 0 and X_type != "Nothing":
# Assign text
text = X_label[col]
# Add the corresponding X_value as a label above the image
initial_font_size = int(48 * img.width / 512)
font_size = adjusted_font_size(text, initial_font_size, img.width)
label_height = int(font_size*1.5)
# Create a white background label image
label_bg = Image.new('RGBA', (img.width, label_height), color=(255, 255, 255, 0))
d = ImageDraw.Draw(label_bg)
# Create the font object
font = ImageFont.truetype(str(Path(font_path)), font_size)
# Calculate the text size and the starting position
_, _, text_width, text_height = d.textbbox([0,0], text, font=font)
text_x = (img.width - text_width) // 2
text_y = (label_height - text_height) // 2
# Add the text to the label image
d.text((text_x, text_y), text, fill='black', font=font)
# Calculate the available space between the top of the background and the top of the image
available_space = y_offset - label_height
# Calculate the new Y position for the label image
label_y = available_space // 2
# Paste the label image above the image on the background using alpha_composite()
background.alpha_composite(label_bg, (x_offset, label_y))
if col == 0 and Y_type != "Nothing":
# Assign text
text = Y_label[row]
# Add the corresponding Y_value as a label to the left of the image
if Y_label_orientation == "Vertical":
initial_font_size = int(48 * latent_width / 512) # Adjusting this to be same as X_label size
font_size = adjusted_font_size(text, initial_font_size, latent_width)
else: # Assuming Y_label_orientation is "Horizontal"
initial_font_size = int(48 * (border_size_left/Y_label_scale) / 512) # Adjusting this to be same as X_label size
font_size = adjusted_font_size(text, initial_font_size, int(border_size_left/Y_label_scale))
# Create a white background label image
label_bg = Image.new('RGBA', (img.height, int(font_size*1.2)), color=(255, 255, 255, 0))
d = ImageDraw.Draw(label_bg)
# Create the font object
font = ImageFont.truetype(str(Path(font_path)), font_size)
# Calculate the text size and the starting position
_, _, text_width, text_height = d.textbbox([0,0], text, font=font)
text_x = (img.height - text_width) // 2
text_y = (font_size - text_height) // 2
# Add the text to the label image
d.text((text_x, text_y), text, fill='black', font=font)
# Rotate the label_bg 90 degrees counter-clockwise only if Y_label_orientation is "Vertical"
if Y_label_orientation == "Vertical":
label_bg = label_bg.rotate(90, expand=True)
# Calculate the available space between the left of the background and the left of the image
available_space = x_offset - label_bg.width
# Calculate the new X position for the label image
label_x = available_space // 2
# Calculate the Y position for the label image based on its orientation
if Y_label_orientation == "Vertical":
label_y = y_offset + (img.height - label_bg.height) // 2
else: # Assuming Y_label_orientation is "Horizontal"
label_y = y_offset + img.height - (img.height - label_bg.height) // 2
# Paste the label image to the left of the image on the background using alpha_composite()
background.alpha_composite(label_bg, (label_x, label_y))
# Update the x_offset
x_offset += img.width + grid_spacing
# Update the y_offset
y_offset += img.height + grid_spacing
images = pil2tensor(background)
# Generate image results and store
results = preview_images(images, filename_prefix)
update_value_by_id("results", my_unique_id, results)
# Squeeze and Stack the tensors, and store results
if xyplot_as_output_image == False:
image_tensor_list = torch.stack([tensor.squeeze() for tensor in image_tensor_list])
else:
image_tensor_list = images
update_value_by_id("images", my_unique_id, image_tensor_list)
# Print cache if set to true
if cache_models == "True":
print_loaded_objects_entries(script_node_id, prompt)
print("-" * 40) # Print an empty line followed by a separator line
images = list() if preview_image == "Output Only" else results
return {
"ui": {"images": images},
"result": (model, positive, negative, {"samples": latent_list}, vae, image_tensor_list,)
}
########################################################################################################################
# TSC XY Plot
class TSC_XYplot:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"grid_spacing": ("INT", {"default": 0, "min": 0, "max": 500, "step": 5}),
"XY_flip": (["False","True"],),
"Y_label_orientation": (["Horizontal", "Vertical"],),
"cache_models": (["True", "False"],),
"ksampler_output_image": (["Plot", "Images"],),},
"optional": {
"dependencies": ("DEPENDENCIES", ),
"X": ("XY", ),
"Y": ("XY", ),},
}
RETURN_TYPES = ("SCRIPT",)
RETURN_NAMES = ("SCRIPT",)
FUNCTION = "XYplot"
CATEGORY = "Efficiency Nodes/XY Plot"
def XYplot(self, grid_spacing, XY_flip, Y_label_orientation, cache_models, ksampler_output_image, dependencies=None, X=None, Y=None):
# Unpack X & Y Tuples if connected
if X != None:
X_type, X_value = X
else:
X_type = "Nothing"
X_value = [""]
if Y != None:
Y_type, Y_value = Y
else:
Y_type = "Nothing"
Y_value = [""]
# If types are the same exit. If one isn't "Nothing", print error
if (X_type == Y_type):
if X_type != "Nothing":
print(f"\033[31mXY Plot Error:\033[0m X and Y input types must be different.")
return (None,)
# Check that dependencies is connected for Checkpoint and LoRA plots
types = ("Checkpoint", "LoRA", "Positive Prompt S/R", "Negative Prompt S/R")
if X_type in types or Y_type in types:
if dependencies == None: # Not connected
print(f"\033[31mXY Plot Error:\033[0m The dependencies input must be connected for certain plot types.")
# Return None
return (None,)
# Define X/Y_values for "Seeds++ Batch"
if X_type == "Seeds++ Batch":
X_value = [i for i in range(X_value[0])]
if Y_type == "Seeds++ Batch":
Y_value = [i for i in range(Y_value[0])]
# Clean Schedulers from Sampler data (if other type is Scheduler)
if X_type == "Sampler" and Y_type == "Scheduler":
# Clear X_value Scheduler's
X_value = [(x[0], "") for x in X_value]
elif Y_type == "Sampler" and X_type == "Scheduler":
# Clear Y_value Scheduler's
Y_value = [(y[0], "") for y in Y_value]
# Embed information into "Scheduler" X/Y_values for text label
if X_type == "Scheduler" and Y_type != "Sampler":
# X_value second tuple value of each array entry = None
X_value = [(x, None) for x in X_value]
if Y_type == "Scheduler" and X_type != "Sampler":
# Y_value second tuple value of each array entry = None
Y_value = [(y, None) for y in Y_value]
# Optimize image generation by prioritizing Checkpoint>LoRA>VAE>PromptSR as X in For Loop. Flip back when done.
if Y_type == "Checkpoint" or \
Y_type == "LoRA" and X_type not in {"Checkpoint"} or \
Y_type == "VAE" and X_type not in {"Checkpoint", "LoRA"} or \
Y_type == "Positive Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE",
"Negative Prompt S/R"} or \
Y_type == "Negative Prompt S/R" and X_type not in {"Checkpoint", "LoRA", "VAE",
"Positive Prompt S/R"} or \
X_type == "Nothing" and Y_type != "Nothing":
flip_xy = True
X_type, Y_type = Y_type, X_type
X_value, Y_value = Y_value, X_value
else:
flip_xy = False
# Flip X and Y
if XY_flip == "True":
X_type, Y_type = Y_type, X_type
X_value, Y_value = Y_value, X_value
# Define Ksampler output image behavior
xyplot_as_output_image = ksampler_output_image == "Plot"
return ((X_type, X_value, Y_type, Y_value, grid_spacing, Y_label_orientation, cache_models,
xyplot_as_output_image, flip_xy, dependencies),)
# TSC XY Plot: Seeds Values
class TSC_XYplot_SeedsBatch:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"batch_count": ("INT", {"default": 1, "min": 0, "max": 50}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, batch_count):
if batch_count == 0:
return (None,)
xy_type = "Seeds++ Batch"
xy_value = [batch_count]
return ((xy_type, xy_value),)
# TSC XY Plot: Step Values
class TSC_XYplot_Steps:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
"steps_1": ("INT", {"default": 20, "min": 1, "max": 10000}),
"steps_2": ("INT", {"default": 20, "min": 1, "max": 10000}),
"steps_3": ("INT", {"default": 20, "min": 1, "max": 10000}),
"steps_4": ("INT", {"default": 20, "min": 1, "max": 10000}),
"steps_5": ("INT", {"default": 20, "min": 1, "max": 10000}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, select_count, steps_1, steps_2, steps_3, steps_4, steps_5):
xy_type = "Steps"
xy_value = [step for idx, step in enumerate([steps_1, steps_2, steps_3, steps_4, steps_5], start=1) if
idx <= select_count]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: CFG Values
class TSC_XYplot_CFG:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
"cfg_1": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"cfg_2": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"cfg_3": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"cfg_4": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"cfg_5": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, select_count, cfg_1, cfg_2, cfg_3, cfg_4, cfg_5):
xy_type = "CFG Scale"
xy_value = [cfg for idx, cfg in enumerate([cfg_1, cfg_2, cfg_3, cfg_4, cfg_5], start=1) if idx <= select_count]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: Sampler Values
class TSC_XYplot_Sampler:
samplers = ["None"] + comfy.samplers.KSampler.SAMPLERS
schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"sampler_1": (cls.samplers,),
"scheduler_1": (cls.schedulers,),
"sampler_2": (cls.samplers,),
"scheduler_2": (cls.schedulers,),
"sampler_3": (cls.samplers,),
"scheduler_3": (cls.schedulers,),
"sampler_4": (cls.samplers,),
"scheduler_4": (cls.schedulers,),
"sampler_5": (cls.samplers,),
"scheduler_5": (cls.schedulers,),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, sampler_1, scheduler_1, sampler_2, scheduler_2, sampler_3, scheduler_3,
sampler_4, scheduler_4, sampler_5, scheduler_5):
samplers = [sampler_1, sampler_2, sampler_3, sampler_4, sampler_5]
schedulers = [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5]
pairs = []
for sampler, scheduler in zip(samplers, schedulers):
if sampler != "None":
if scheduler != "None":
pairs.append((sampler, scheduler))
else:
pairs.append((sampler,None))
xy_type = "Sampler"
xy_value = pairs
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: Scheduler Values
class TSC_XYplot_Scheduler:
schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"scheduler_1": (cls.schedulers,),
"scheduler_2": (cls.schedulers,),
"scheduler_3": (cls.schedulers,),
"scheduler_4": (cls.schedulers,),
"scheduler_5": (cls.schedulers,),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5):
xy_type = "Scheduler"
xy_value = [scheduler for scheduler in [scheduler_1, scheduler_2, scheduler_3, scheduler_4, scheduler_5] if
scheduler != "None"]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: Denoise Values
class TSC_XYplot_Denoise:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
"denoise_1": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"denoise_2": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"denoise_3": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"denoise_4": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"denoise_5": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, select_count, denoise_1, denoise_2, denoise_3, denoise_4, denoise_5):
xy_type = "Denoise"
xy_value = [denoise for idx, denoise in
enumerate([denoise_1, denoise_2, denoise_3, denoise_4, denoise_5], start=1) if idx <= select_count]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: VAE Values
class TSC_XYplot_VAE:
vaes = ["None"] + folder_paths.get_filename_list("vae")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"vae_name_1": (cls.vaes,),
"vae_name_2": (cls.vaes,),
"vae_name_3": (cls.vaes,),
"vae_name_4": (cls.vaes,),
"vae_name_5": (cls.vaes,),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5):
xy_type = "VAE"
xy_value = [vae for vae in [vae_name_1, vae_name_2, vae_name_3, vae_name_4, vae_name_5] if vae != "None"]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: Prompt S/R Positive
class TSC_XYplot_PromptSR_Positive:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"search_txt": ("STRING", {"default": "", "multiline": False}),
"replace_count": ("INT", {"default": 0, "min": 0, "max": 4}),
"replace_1":("STRING", {"default": "", "multiline": False}),
"replace_2": ("STRING", {"default": "", "multiline": False}),
"replace_3": ("STRING", {"default": "", "multiline": False}),
"replace_4": ("STRING", {"default": "", "multiline": False}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4):
# If search_txt is empty, return (None,)
if search_txt == "":
return (None,)
xy_type = "Positive Prompt S/R"
# Create a list of replacement arguments
replacements = [replace_1, replace_2, replace_3, replace_4]
# Create base entry
xy_values = [(search_txt, None)]
if replace_count > 0:
# Append additional entries based on replace_count
xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)])
return ((xy_type, xy_values),)
# TSC XY Plot: Prompt S/R Negative
class TSC_XYplot_PromptSR_Negative:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"search_txt": ("STRING", {"default": "", "multiline": False}),
"replace_count": ("INT", {"default": 0, "min": 0, "max": 4}),
"replace_1":("STRING", {"default": "", "multiline": False}),
"replace_2": ("STRING", {"default": "", "multiline": False}),
"replace_3": ("STRING", {"default": "", "multiline": False}),
"replace_4": ("STRING", {"default": "", "multiline": False}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, search_txt, replace_count, replace_1, replace_2, replace_3, replace_4):
# If search_txt is empty, return (None,)
if search_txt == "":
return (None,)
xy_type = "Negative Prompt S/R"
# Create a list of replacement arguments
replacements = [replace_1, replace_2, replace_3, replace_4]
# Create base entry
xy_values = [(search_txt, None)]
if replace_count > 0:
# Append additional entries based on replace_count
xy_values.extend([(search_txt, replacements[i]) for i in range(replace_count)])
return ((xy_type, xy_values),)
# TSC XY Plot: Checkpoint Values
class TSC_XYplot_Checkpoint:
checkpoints = ["None"] + folder_paths.get_filename_list("checkpoints")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"ckpt_name_1": (cls.checkpoints,),
"clip_skip1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"ckpt_name_2": (cls.checkpoints,),
"clip_skip2": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"ckpt_name_3": (cls.checkpoints,),
"clip_skip3": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"ckpt_name_4": (cls.checkpoints,),
"clip_skip4": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"ckpt_name_5": (cls.checkpoints,),
"clip_skip5": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, ckpt_name_1, clip_skip1, ckpt_name_2, clip_skip2, ckpt_name_3, clip_skip3,
ckpt_name_4, clip_skip4, ckpt_name_5, clip_skip5):
xy_type = "Checkpoint"
checkpoints = [ckpt_name_1, ckpt_name_2, ckpt_name_3, ckpt_name_4, ckpt_name_5]
clip_skips = [clip_skip1, clip_skip2, clip_skip3, clip_skip4, clip_skip5]
xy_value = [(checkpoint, clip_skip) for checkpoint, clip_skip in zip(checkpoints, clip_skips) if
checkpoint != "None"]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: Clip Skip
class TSC_XYplot_ClipSkip:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"select_count": ("INT", {"default": 0, "min": 0, "max": 5}),
"clip_skip_1": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
"clip_skip_2": ("INT", {"default": -2, "min": -24, "max": -1, "step": 1}),
"clip_skip_3": ("INT", {"default": -3, "min": -24, "max": -1, "step": 1}),
"clip_skip_4": ("INT", {"default": -4, "min": -24, "max": -1, "step": 1}),
"clip_skip_5": ("INT", {"default": -5, "min": -24, "max": -1, "step": 1}),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, select_count, clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5):
xy_type = "Clip Skip"
xy_value = [clip_skip for idx, clip_skip in
enumerate([clip_skip_1, clip_skip_2, clip_skip_3, clip_skip_4, clip_skip_5], start=1) if idx <= select_count]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: LoRA Values
class TSC_XYplot_LoRA:
loras = ["None"] + folder_paths.get_filename_list("loras")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"model_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_strengths": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_1": (cls.loras,),
"lora_name_2": (cls.loras,),
"lora_name_3": (cls.loras,),
"lora_name_4": (cls.loras,),
"lora_name_5": (cls.loras,)},
"optional": {"lora_stack": ("LORA_STACK", )}
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, model_strengths, clip_strengths, lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5,
lora_stack=None):
xy_type = "LoRA"
loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5]
# Extend each sub-array with lora_stack if it's not None
xy_value = [[(lora, model_strengths, clip_strengths)] + (lora_stack if lora_stack else []) for lora in loras if
lora != "None"]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: LoRA Advanced
class TSC_XYplot_LoRA_Adv:
loras = ["None"] + folder_paths.get_filename_list("loras")
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"lora_name_1": (cls.loras,),
"model_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_1": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_2": (cls.loras,),
"model_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_2": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_3": (cls.loras,),
"model_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_3": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_4": (cls.loras,),
"model_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_4": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"lora_name_5": (cls.loras,),
"model_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_str_5": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),},
"optional": {"lora_stack": ("LORA_STACK",)}
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, lora_name_1, model_str_1, clip_str_1, lora_name_2, model_str_2, clip_str_2, lora_name_3,
model_str_3,
clip_str_3, lora_name_4, model_str_4, clip_str_4, lora_name_5, model_str_5, clip_str_5,
lora_stack=None):
xy_type = "LoRA"
loras = [lora_name_1, lora_name_2, lora_name_3, lora_name_4, lora_name_5]
model_strs = [model_str_1, model_str_2, model_str_3, model_str_4, model_str_5]
clip_strs = [clip_str_1, clip_str_2, clip_str_3, clip_str_4, clip_str_5]
# Extend each sub-array with lora_stack if it's not None
xy_value = [[(lora, model_str, clip_str)] + (lora_stack if lora_stack else []) for lora, model_str, clip_str in
zip(loras, model_strs, clip_strs) if lora != "None"]
if not xy_value: # Check if the list is empty
return (None,)
return ((xy_type, xy_value),)
# TSC XY Plot: LoRA Stacks
class TSC_XYplot_LoRA_Stacks:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"node_state": (["Enabled", "Disabled"],)},
"optional": {
"lora_stack_1": ("LORA_STACK",),
"lora_stack_2": ("LORA_STACK",),
"lora_stack_3": ("LORA_STACK",),
"lora_stack_4": ("LORA_STACK",),
"lora_stack_5": ("LORA_STACK",),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, node_state, lora_stack_1=None, lora_stack_2=None, lora_stack_3=None, lora_stack_4=None, lora_stack_5=None):
xy_type = "LoRA"
xy_value = [stack for stack in [lora_stack_1, lora_stack_2, lora_stack_3, lora_stack_4, lora_stack_5] if stack is not None]
if not xy_value or not any(xy_value) or node_state == "Disabled":
return (None,)
else:
return ((xy_type, xy_value),)
# TSC XY Plot: Manual Entry Notes
class TSC_XYplot_Manual_XY_Entry_Info:
syntax = "(X/Y_types) (X/Y_values)\n" \
"Seeds++ Batch batch_count\n" \
"Steps steps_1;steps_2;...\n" \
"CFG Scale cfg_1;cfg_2;...\n" \
"Sampler(1) sampler_1;sampler_2;...\n" \
"Sampler(2) sampler_1,scheduler_1;...\n" \
"Sampler(3) sampler_1;...;,default_scheduler\n" \
"Scheduler scheduler_1;scheduler_2;...\n" \
"Denoise denoise_1;denoise_2;...\n" \
"VAE vae_1;vae_2;vae_3;...\n" \
"+Prompt S/R search_txt;replace_1;replace_2;...\n" \
"-Prompt S/R search_txt;replace_1;replace_2;...\n" \
"Checkpoint(1) ckpt_1;ckpt_2;ckpt_3;...\n" \
"Checkpoint(2) ckpt_1,clip_skip_1;...\n" \
"Checkpoint(3) ckpt_1;ckpt_2;...;,default_clip_skip\n" \
"Clip Skip clip_skip_1;clip_skip_2;...\n" \
"LoRA(1) lora_1;lora_2;lora_3;...\n" \
"LoRA(2) lora_1;...;,default_model_str,default_clip_str\n" \
"LoRA(3) lora_1,model_str_1,clip_str_1;..."
samplers = ";\n".join(comfy.samplers.KSampler.SAMPLERS)
schedulers = ";\n".join(comfy.samplers.KSampler.SCHEDULERS)
vaes = ";\n".join(folder_paths.get_filename_list("vae"))
ckpts = ";\n".join(folder_paths.get_filename_list("checkpoints"))
loras = ";\n".join(folder_paths.get_filename_list("loras"))
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"notes": ("STRING", {"default":
f"_____________SYNTAX_____________\n{cls.syntax}\n\n"
f"____________SAMPLERS____________\n{cls.samplers}\n\n"
f"___________SCHEDULERS___________\n{cls.schedulers}\n\n"
f"_____________VAES_______________\n{cls.vaes}\n\n"
f"___________CHECKPOINTS__________\n{cls.ckpts}\n\n"
f"_____________LORAS______________\n{cls.loras}\n","multiline": True}),},}
RETURN_TYPES = ()
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
# TSC XY Plot: Manual Entry
class TSC_XYplot_Manual_XY_Entry:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"X_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE",
"Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],),
"X_value": ("STRING", {"default": "", "multiline": True}),
"Y_type": (["Nothing", "Seeds++ Batch", "Steps", "CFG Scale", "Sampler", "Scheduler", "Denoise", "VAE",
"Positive Prompt S/R", "Negative Prompt S/R", "Checkpoint", "Clip Skip", "LoRA"],),
"Y_value": ("STRING", {"default": "", "multiline": True}),},}
RETURN_TYPES = ("XY", "XY",)
RETURN_NAMES = ("X", "Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, X_type, X_value, Y_type, Y_value, prompt=None, my_unique_id=None):
# Store X values as arrays
if X_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}:
X_value = X_value.replace(" ", "") # Remove spaces
X_value = X_value.replace("\n", "") # Remove newline characters
X_value = X_value.rstrip(";") # Remove trailing semicolon
X_value = X_value.split(";") # Turn to array
# Store Y values as arrays
if Y_type not in {"Positive Prompt S/R", "Negative Prompt S/R", "VAE", "Checkpoint", "LoRA"}:
Y_value = Y_value.replace(" ", "") # Remove spaces
Y_value = Y_value.replace("\n", "") # Remove newline characters
Y_value = Y_value.rstrip(";") # Remove trailing semicolon
Y_value = Y_value.split(";") # Turn to array
# Define the valid bounds for each type
bounds = {
"Seeds++ Batch": {"min": 0, "max": 50},
"Steps": {"min": 1, "max": 10000},
"CFG Scale": {"min": 0, "max": 100},
"Sampler": {"options": comfy.samplers.KSampler.SAMPLERS},
"Scheduler": {"options": comfy.samplers.KSampler.SCHEDULERS},
"Denoise": {"min": 0, "max": 1},
"VAE": {"options": folder_paths.get_filename_list("vae")},
"Checkpoint": {"options": folder_paths.get_filename_list("checkpoints")},
"Clip Skip": {"min": -24, "max": -1},
"LoRA": {"options": folder_paths.get_filename_list("loras"),
"model_str": {"min": 0, "max": 10},"clip_str": {"min": 0, "max": 10},},
}
# Validates a value based on its corresponding value_type and bounds.
def validate_value(value, value_type, bounds):
# ________________________________________________________________________
# Seeds++ Batch
if value_type == "Seeds++ Batch":
try:
x = int(float(value))
if x < bounds["Seeds++ Batch"]["min"]:
x = bounds["Seeds++ Batch"]["min"]
elif x > bounds["Seeds++ Batch"]["max"]:
x = bounds["Seeds++ Batch"]["max"]
except ValueError:
print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid batch count.")
return None
if float(value) != x:
print(f"\033[31mmXY Plot Error:\033[0m '{value}' is not a valid batch count.")
return None
return x
# ________________________________________________________________________
# Steps
elif value_type == "Steps":
try:
x = int(value)
if x < bounds["Steps"]["min"]:
x = bounds["Steps"]["min"]
elif x > bounds["Steps"]["max"]:
x = bounds["Steps"]["max"]
return x
except ValueError:
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Step count.")
return None
# ________________________________________________________________________
# CFG Scale
elif value_type == "CFG Scale":
try:
x = float(value)
if x < bounds["CFG Scale"]["min"]:
x = bounds["CFG Scale"]["min"]
elif x > bounds["CFG Scale"]["max"]:
x = bounds["CFG Scale"]["max"]
return x
except ValueError:
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['CFG Scale']['min']}"
f" and {bounds['CFG Scale']['max']} for CFG Scale.")
return None
# ________________________________________________________________________
# Sampler
elif value_type == "Sampler":
if isinstance(value, str) and ',' in value:
value = tuple(map(str.strip, value.split(',')))
if isinstance(value, tuple):
if len(value) >= 2:
value = value[:2] # Slice the value tuple to keep only the first two elements
sampler, scheduler = value
scheduler = scheduler.lower() # Convert the scheduler name to lowercase
if sampler not in bounds["Sampler"]["options"]:
valid_samplers = '\n'.join(bounds["Sampler"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{sampler}' is not a valid sampler. Valid samplers are:\n{valid_samplers}")
sampler = None
if scheduler not in bounds["Scheduler"]["options"]:
valid_schedulers = '\n'.join(bounds["Scheduler"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{scheduler}' is not a valid scheduler. Valid schedulers are:\n{valid_schedulers}")
scheduler = None
if sampler is None or scheduler is None:
return None
else:
return sampler, scheduler
else:
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler.'")
return None
else:
if value not in bounds["Sampler"]["options"]:
valid_samplers = '\n'.join(bounds["Sampler"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid sampler. Valid samplers are:\n{valid_samplers}")
return None
else:
return value, None
# ________________________________________________________________________
# Scheduler
elif value_type == "Scheduler":
if value not in bounds["Scheduler"]["options"]:
valid_schedulers = '\n'.join(bounds["Scheduler"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Scheduler. Valid Schedulers are:\n{valid_schedulers}")
return None
else:
return value
# ________________________________________________________________________
# Denoise
elif value_type == "Denoise":
try:
x = float(value)
if x < bounds["Denoise"]["min"]:
x = bounds["Denoise"]["min"]
elif x > bounds["Denoise"]["max"]:
x = bounds["Denoise"]["max"]
return x
except ValueError:
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a number between {bounds['Denoise']['min']} "
f"and {bounds['Denoise']['max']} for Denoise.")
return None
# ________________________________________________________________________
# VAE
elif value_type == "VAE":
if value not in bounds["VAE"]["options"]:
valid_vaes = '\n'.join(bounds["VAE"]["options"])
print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid VAE. Valid VAEs are:\n{valid_vaes}")
return None
else:
return value
# ________________________________________________________________________
# Checkpoint
elif value_type == "Checkpoint":
if isinstance(value, str) and ',' in value:
value = tuple(map(str.strip, value.split(',')))
if isinstance(value, tuple):
if len(value) >= 2:
value = value[:2] # Slice the value tuple to keep only the first two elements
checkpoint, clip_skip = value
try:
clip_skip = int(clip_skip) # Convert the clip_skip to integer
except ValueError:
print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip_skip. "
f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.")
return None
if checkpoint not in bounds["Checkpoint"]["options"]:
valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{checkpoint}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}")
checkpoint = None
if clip_skip < bounds["Clip Skip"]["min"] or clip_skip > bounds["Clip Skip"]["max"]:
print(f"\033[31mXY Plot Error:\033[0m '{clip_skip}' is not a valid clip skip. "
f"Valid clip skip values are integers between {bounds['Clip Skip']['min']} and {bounds['Clip Skip']['max']}.")
clip_skip = None
if checkpoint is None or clip_skip is None:
return None
else:
return checkpoint, clip_skip
else:
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint.'")
return None
else:
if value not in bounds["Checkpoint"]["options"]:
valid_checkpoints = '\n'.join(bounds["Checkpoint"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid checkpoint. Valid checkpoints are:\n{valid_checkpoints}")
return None
else:
return value, None
# ________________________________________________________________________
# Clip Skip
elif value_type == "Clip Skip":
try:
x = int(value)
if x < bounds["Clip Skip"]["min"]:
x = bounds["Clip Skip"]["min"]
elif x > bounds["Clip Skip"]["max"]:
x = bounds["Clip Skip"]["max"]
return x
except ValueError:
print(f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid Clip Skip.")
return None
# ________________________________________________________________________
# LoRA
elif value_type == "LoRA":
if isinstance(value, str) and ',' in value:
value = tuple(map(str.strip, value.split(',')))
if isinstance(value, tuple):
lora_name, model_str, clip_str = (value + (1.0, 1.0))[:3] # Defaults model_str and clip_str to 1 if not provided
if lora_name not in bounds["LoRA"]["options"]:
valid_loras = '\n'.join(bounds["LoRA"]["options"])
print(f"\033[31mXY Plot Error:\033[0m '{lora_name}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}")
lora_name = None
try:
model_str = float(model_str)
clip_str = float(clip_str)
except ValueError:
print(f"\033[31mXY Plot Error:\033[0m The LoRA model strength and clip strength values should be numbers"
f" between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.")
return None
if model_str < bounds["LoRA"]["model_str"]["min"] or model_str > bounds["LoRA"]["model_str"]["max"]:
print(f"\033[31mXY Plot Error:\033[0m '{model_str}' is not a valid LoRA model strength value. "
f"Valid lora model strength values are between {bounds['LoRA']['model_str']['min']} and {bounds['LoRA']['model_str']['max']}.")
model_str = None
if clip_str < bounds["LoRA"]["clip_str"]["min"] or clip_str > bounds["LoRA"]["clip_str"]["max"]:
print(f"\033[31mXY Plot Error:\033[0m '{clip_str}' is not a valid LoRA clip strength value. "
f"Valid lora clip strength values are between {bounds['LoRA']['clip_str']['min']} and {bounds['LoRA']['clip_str']['max']}.")
clip_str = None
if lora_name is None or model_str is None or clip_str is None:
return None
else:
return lora_name, model_str, clip_str
else:
if value not in bounds["LoRA"]["options"]:
valid_loras = '\n'.join(bounds["LoRA"]["options"])
print(
f"\033[31mXY Plot Error:\033[0m '{value}' is not a valid LoRA. Valid LoRAs are:\n{valid_loras}")
return None
else:
return value, 1.0, 1.0
# ________________________________________________________________________
else:
return None
# Validate X_value array length is 1 if doing a "Seeds++ Batch"
if len(X_value) != 1 and X_type == "Seeds++ Batch":
print(f"\033[31mXY Plot Error:\033[0m '{';'.join(X_value)}' is not a valid batch count.")
return (None,None,)
# Validate Y_value array length is 1 if doing a "Seeds++ Batch"
if len(Y_value) != 1 and Y_type == "Seeds++ Batch":
print(f"\033[31mXY Plot Error:\033[0m '{';'.join(Y_value)}' is not a valid batch count.")
return (None,None,)
# Apply allowed shortcut syntax to certain input types
if X_type in ["Sampler", "Checkpoint", "LoRA"]:
if X_value[-1].startswith(','):
# Remove the leading comma from the last entry and store it as suffixes
suffixes = X_value.pop().lstrip(',').split(',')
# Split all preceding entries into subentries
X_value = [entry.split(',') for entry in X_value]
# Make all entries the same length as suffixes by appending missing elements
for entry in X_value:
entry += suffixes[len(entry) - 1:]
# Join subentries back into strings
X_value = [','.join(entry) for entry in X_value]
# Apply allowed shortcut syntax to certain input types
if Y_type in ["Sampler", "Checkpoint", "LoRA"]:
if Y_value[-1].startswith(','):
# Remove the leading comma from the last entry and store it as suffixes
suffixes = Y_value.pop().lstrip(',').split(',')
# Split all preceding entries into subentries
Y_value = [entry.split(',') for entry in Y_value]
# Make all entries the same length as suffixes by appending missing elements
for entry in Y_value:
entry += suffixes[len(entry) - 1:]
# Join subentries back into strings
Y_value = [','.join(entry) for entry in Y_value]
# Prompt S/R X Cleanup
if X_type in {"Positive Prompt S/R", "Negative Prompt S/R"}:
if X_value[0] == '':
print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.")
return (None, None,)
else:
X_value = [(X_value[0], None) if i == 0 else (X_value[0], x) for i, x in enumerate(X_value)]
# Prompt S/R X Cleanup
if Y_type in {"Positive Prompt S/R", "Negative Prompt S/R"}:
if Y_value[0] == '':
print(f"\033[31mXY Plot Error:\033[0m Prompt S/R value can not be empty.")
return (None, None,)
else:
Y_value = [(Y_value[0], None) if i == 0 else (Y_value[0], y) for i, y in enumerate(Y_value)]
# Loop over each entry in X_value and check if it's valid
if X_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}:
for i in range(len(X_value)):
X_value[i] = validate_value(X_value[i], X_type, bounds)
if X_value[i] == None:
return (None,None,)
# Loop over each entry in Y_value and check if it's valid
if Y_type not in {"Nothing", "Positive Prompt S/R", "Negative Prompt S/R"}:
for i in range(len(Y_value)):
Y_value[i] = validate_value(Y_value[i], Y_type, bounds)
if Y_value[i] == None:
return (None,None,)
# Nest LoRA value in another array to reflect LoRA stack changes
if X_type == "LoRA":
X_value = [X_value]
if Y_type == "LoRA":
Y_value = [Y_value]
# Clean X/Y_values
if X_type == "Nothing":
X_value = [""]
if Y_type == "Nothing":
Y_value = [""]
return ((X_type, X_value), (Y_type, Y_value),)
# TSC XY Plot: Seeds Values
class TSC_XYplot_JoinInputs:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"XY_1": ("XY",),
"XY_2": ("XY",),},
}
RETURN_TYPES = ("XY",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "Efficiency Nodes/XY Plot/XY Inputs"
def xy_value(self, XY_1, XY_2):
xy_type_1, xy_value_1 = XY_1
xy_type_2, xy_value_2 = XY_2
if xy_type_1 != xy_type_2:
print(f"\033[31mJoin XY Inputs Error:\033[0m Input types must match")
return (None,)
elif xy_type_1 == "Seeds++ Batch":
xy_type = xy_type_1
xy_value = [xy_value_1[0] + xy_value_2[0]]
elif xy_type_1 == "Positive Prompt S/R" or xy_type_1 == "Negative Prompt S/R":
xy_type = xy_type_1
xy_value = xy_value_1 + [(xy_value_1[0][0], t[1]) for t in xy_value_2[1:]]
else:
xy_type = xy_type_1
xy_value = xy_value_1 + xy_value_2
return ((xy_type, xy_value),)
########################################################################################################################
# TSC Image Overlay
class TSC_ImageOverlay:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"base_image": ("IMAGE",),
"overlay_image": ("IMAGE",),
"overlay_resize": (["None", "Fit", "Resize by rescale_factor", "Resize to width & heigth"],),
"resize_method": (["nearest-exact", "bilinear", "area"],),
"rescale_factor": ("FLOAT", {"default": 1, "min": 0.01, "max": 16.0, "step": 0.1}),
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 64}),
"x_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}),
"y_offset": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 10}),
"rotation": ("INT", {"default": 0, "min": -180, "max": 180, "step": 5}),
"opacity": ("FLOAT", {"default": 0, "min": 0, "max": 100, "step": 5}),
},
"optional": {"optional_mask": ("MASK",),}
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "apply_overlay_image"
CATEGORY = "Efficiency Nodes/Image"
def apply_overlay_image(self, base_image, overlay_image, overlay_resize, resize_method, rescale_factor,
width, height, x_offset, y_offset, rotation, opacity, optional_mask=None):
# Pack tuples and assign variables
size = width, height
location = x_offset, y_offset
mask = optional_mask
# Check for different sizing options
if overlay_resize != "None":
#Extract overlay_image size and store in Tuple "overlay_image_size" (WxH)
overlay_image_size = overlay_image.size()
overlay_image_size = (overlay_image_size[2], overlay_image_size[1])
if overlay_resize == "Fit":
overlay_image_size = (base_image.size[0],base_image.size[1])
elif overlay_resize == "Resize by rescale_factor":
overlay_image_size = tuple(int(dimension * rescale_factor) for dimension in overlay_image_size)
elif overlay_resize == "Resize to width & heigth":
overlay_image_size = (size[0], size[1])
samples = overlay_image.movedim(-1, 1)
overlay_image = comfy.utils.common_upscale(samples, overlay_image_size[0], overlay_image_size[1], resize_method, False)
overlay_image = overlay_image.movedim(1, -1)
overlay_image = tensor2pil(overlay_image)
# Add Alpha channel to overlay
overlay_image = overlay_image.convert('RGBA')
overlay_image.putalpha(Image.new("L", overlay_image.size, 255))
# If mask connected, check if the overlay_image image has an alpha channel
if mask is not None:
# Convert mask to pil and resize
mask = tensor2pil(mask)
mask = mask.resize(overlay_image.size)
# Apply mask as overlay's alpha
overlay_image.putalpha(ImageOps.invert(mask))
# Rotate the overlay image
overlay_image = overlay_image.rotate(rotation, expand=True)
# Apply opacity on overlay image
r, g, b, a = overlay_image.split()
a = a.point(lambda x: max(0, int(x * (1 - opacity / 100))))
overlay_image.putalpha(a)
# Split the base_image tensor along the first dimension to get a list of tensors
base_image_list = torch.unbind(base_image, dim=0)
# Convert each tensor to a PIL image, apply the overlay, and then convert it back to a tensor
processed_base_image_list = []
for tensor in base_image_list:
# Convert tensor to PIL Image
image = tensor2pil(tensor)
# Paste the overlay image onto the base image
if mask is None:
image.paste(overlay_image, location)
else:
image.paste(overlay_image, location, overlay_image)
# Convert PIL Image back to tensor
processed_tensor = pil2tensor(image)
# Append to list
processed_base_image_list.append(processed_tensor)
# Combine the processed images back into a single tensor
base_image = torch.stack([tensor.squeeze() for tensor in processed_base_image_list])
# Return the edited base image
return (base_image,)
########################################################################################################################
# Install simple_eval if missing from packages
def install_simpleeval():
if 'simpleeval' not in packages():
print("\033[32mEfficiency Nodes:\033[0m")
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'simpleeval'])
def packages(versions=False):
return [(r.decode().split('==')[0] if not versions else r.decode()) for r in subprocess.check_output([sys.executable, '-m', 'pip', 'freeze']).split()]
install_simpleeval()
from simpleeval import simple_eval
# TSC Evaluate Integers (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateInts:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}),
"print_to_console": (["False", "True"],),},
"optional": {
"a": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),
"b": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),
"c": ("INT", {"default": 0, "min": -48000, "max": 48000, "step": 1}),},
}
RETURN_TYPES = ("INT", "FLOAT", "STRING",)
OUTPUT_NODE = True
FUNCTION = "evaluate"
CATEGORY = "Efficiency Nodes/Simple Eval"
def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0):
# simple_eval doesn't require the result to be converted to a string
result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c})
int_result = int(result)
float_result = float(result)
string_result = str(result)
if print_to_console == "True":
print("\n\033[31mEvaluate Integers:\033[0m")
print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m")
print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str(
float_result) + ", STRING: " + string_result + "\033[0m")
return (int_result, float_result, string_result,)
# TSC Evaluate Floats (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateFloats:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"python_expression": ("STRING", {"default": "((a + b) - c) / 2", "multiline": False}),
"print_to_console": (["False", "True"],),},
"optional": {
"a": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),
"b": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),
"c": ("FLOAT", {"default": 0, "min": -sys.float_info.max, "max": sys.float_info.max, "step": 1}),},
}
RETURN_TYPES = ("INT", "FLOAT", "STRING",)
OUTPUT_NODE = True
FUNCTION = "evaluate"
CATEGORY = "Efficiency Nodes/Simple Eval"
def evaluate(self, python_expression, print_to_console, a=0, b=0, c=0):
# simple_eval doesn't require the result to be converted to a string
result = simple_eval(python_expression, names={'a': a, 'b': b, 'c': c})
int_result = int(result)
float_result = float(result)
string_result = str(result)
if print_to_console == "True":
print("\n\033[31mEvaluate Floats:\033[0m")
print(f"\033[90m{{a = {a} , b = {b} , c = {c}}} \033[0m")
print(f"{python_expression} = \033[92m INT: " + str(int_result) + " , FLOAT: " + str(
float_result) + ", STRING: " + string_result + "\033[0m")
return (int_result, float_result, string_result,)
# TSC Evaluate Strings (https://github.com/danthedeckie/simpleeval)
class TSC_EvaluateStrs:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"python_expression": ("STRING", {"default": "a + b + c", "multiline": False}),
"print_to_console": (["False", "True"],)},
"optional": {
"a": ("STRING", {"default": "Hello", "multiline": False}),
"b": ("STRING", {"default": " World", "multiline": False}),
"c": ("STRING", {"default": "!", "multiline": False}),}
}
RETURN_TYPES = ("STRING",)
OUTPUT_NODE = True
FUNCTION = "evaluate"
CATEGORY = "Efficiency Nodes/Simple Eval"
def evaluate(self, python_expression, print_to_console, a="", b="", c=""):
variables = {'a': a, 'b': b, 'c': c} # Define the variables for the expression
functions = {"len": len} # Define the functions for the expression
result = simple_eval(python_expression, names=variables, functions=functions)
if print_to_console == "True":
print("\n\033[31mEvaluate Strings:\033[0m")
print(f"\033[90ma = {a} \nb = {b} \nc = {c}\033[0m")
print(f"{python_expression} = \033[92m" + str(result) + "\033[0m")
return (str(result),) # Convert result to a string before returning
# TSC Simple Eval Examples (https://github.com/danthedeckie/simpleeval)
class TSC_EvalExamples:
filepath = os.path.join(my_dir, 'workflows', 'SimpleEval_Node_Examples.txt')
with open(filepath, 'r') as file:
examples = file.read()
@classmethod
def INPUT_TYPES(cls):
return {"required": { "models_text": ("STRING", {"default": cls.examples ,"multiline": True}),},}
RETURN_TYPES = ()
CATEGORY = "Efficiency Nodes/Simple Eval"
# NODE MAPPING
NODE_CLASS_MAPPINGS = {
"KSampler (Efficient)": TSC_KSampler,
"Efficient Loader": TSC_EfficientLoader,
"LoRA Stacker": TSC_LoRA_Stacker,
"LoRA Stacker Adv.": TSC_LoRA_Stacker_Adv,
"XY Plot": TSC_XYplot,
"XY Input: Seeds++ Batch": TSC_XYplot_SeedsBatch,
"XY Input: Steps": TSC_XYplot_Steps,
"XY Input: CFG Scale": TSC_XYplot_CFG,
"XY Input: Sampler": TSC_XYplot_Sampler,
"XY Input: Scheduler": TSC_XYplot_Scheduler,
"XY Input: Denoise": TSC_XYplot_Denoise,
"XY Input: VAE": TSC_XYplot_VAE,
"XY Input: Positive Prompt S/R": TSC_XYplot_PromptSR_Positive,
"XY Input: Negative Prompt S/R": TSC_XYplot_PromptSR_Negative,
"XY Input: Checkpoint": TSC_XYplot_Checkpoint,
"XY Input: Clip Skip": TSC_XYplot_ClipSkip,
"XY Input: LoRA": TSC_XYplot_LoRA,
"XY Input: LoRA Adv.": TSC_XYplot_LoRA_Adv,
"XY Input: LoRA Stacks": TSC_XYplot_LoRA_Stacks,
"XY Input: Manual XY Entry": TSC_XYplot_Manual_XY_Entry,
"Manual XY Entry Info": TSC_XYplot_Manual_XY_Entry_Info,
"Join XY Inputs of Same Type": TSC_XYplot_JoinInputs,
"Image Overlay": TSC_ImageOverlay,
"Evaluate Integers": TSC_EvaluateInts,
"Evaluate Floats": TSC_EvaluateFloats,
"Evaluate Strings": TSC_EvaluateStrs,
"Simple Eval Examples": TSC_EvalExamples
} |