--- base_model: MIT/ast-finetuned-audioset-16-16-0.442 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-16-16-0.442-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.93 --- # ast-finetuned-audioset-16-16-0.442-finetuned-gtzan This model is a fine-tuned version of [ast-finetuned-audioset-16-16-0.442](https://huggingface.co/ast-finetuned-audioset-16-16-0.442) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3315 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 20 - eval_batch_size: 20 - seed: 42 - optimizer: Adam-8bits with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8802 | 1.0 | 45 | 0.5267 | 0.85 | | 0.3183 | 2.0 | 90 | 0.5893 | 0.81 | | 0.1094 | 3.0 | 135 | 0.4421 | 0.89 | | 0.0259 | 4.0 | 180 | 0.4100 | 0.88 | | 0.0291 | 5.0 | 225 | 0.3695 | 0.9 | | 0.0409 | 6.0 | 270 | 0.3071 | 0.91 | | 0.0152 | 7.0 | 315 | 0.3482 | 0.92 | | 0.0003 | 8.0 | 360 | 0.3187 | 0.94 | | 0.0003 | 9.0 | 405 | 0.3258 | 0.93 | | 0.0004 | 10.0 | 450 | 0.3315 | 0.93 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1