Ostixe360 commited on
Commit
240ff3a
·
verified ·
1 Parent(s): c072008

Upload 5 files

Browse files
configuration_qwen.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ from transformers import PretrainedConfig
7
+
8
+
9
+ class QWenConfig(PretrainedConfig):
10
+ model_type = "qwen"
11
+ keys_to_ignore_at_inference = ["past_key_values"]
12
+
13
+ def __init__(
14
+ self,
15
+ vocab_size=151936,
16
+ hidden_size=4096,
17
+ num_hidden_layers=32,
18
+ num_attention_heads=32,
19
+ emb_dropout_prob=0.0,
20
+ attn_dropout_prob=0.0,
21
+ layer_norm_epsilon=1e-6,
22
+ initializer_range=0.02,
23
+ max_position_embeddings=8192,
24
+ scale_attn_weights=True,
25
+ use_cache=True,
26
+ bf16=False,
27
+ fp16=False,
28
+ fp32=False,
29
+ kv_channels=128,
30
+ rotary_pct=1.0,
31
+ rotary_emb_base=10000,
32
+ use_dynamic_ntk=True,
33
+ use_logn_attn=True,
34
+ use_flash_attn="auto",
35
+ intermediate_size=22016,
36
+ no_bias=True,
37
+ tie_word_embeddings=False,
38
+ use_cache_quantization=False,
39
+ use_cache_kernel=False,
40
+ softmax_in_fp32=False,
41
+ **kwargs,
42
+ ):
43
+ self.vocab_size = vocab_size
44
+ self.hidden_size = hidden_size
45
+ self.intermediate_size = intermediate_size
46
+ self.num_hidden_layers = num_hidden_layers
47
+ self.num_attention_heads = num_attention_heads
48
+ self.emb_dropout_prob = emb_dropout_prob
49
+ self.attn_dropout_prob = attn_dropout_prob
50
+ self.layer_norm_epsilon = layer_norm_epsilon
51
+ self.initializer_range = initializer_range
52
+ self.scale_attn_weights = scale_attn_weights
53
+ self.use_cache = use_cache
54
+ self.max_position_embeddings = max_position_embeddings
55
+ self.bf16 = bf16
56
+ self.fp16 = fp16
57
+ self.fp32 = fp32
58
+ self.kv_channels = kv_channels
59
+ self.rotary_pct = rotary_pct
60
+ self.rotary_emb_base = rotary_emb_base
61
+ self.use_dynamic_ntk = use_dynamic_ntk
62
+ self.use_logn_attn = use_logn_attn
63
+ self.use_flash_attn = use_flash_attn
64
+ self.no_bias = no_bias
65
+ self.use_cache_quantization = use_cache_quantization
66
+ self.use_cache_kernel = use_cache_kernel
67
+ self.softmax_in_fp32 = softmax_in_fp32
68
+ super().__init__(
69
+ tie_word_embeddings=tie_word_embeddings,
70
+ **kwargs
71
+ )
cpp_kernels.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch.utils import cpp_extension
2
+ import pathlib
3
+ import os
4
+ import subprocess
5
+
6
+ def _get_cuda_bare_metal_version(cuda_dir):
7
+ raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"],
8
+ universal_newlines=True)
9
+ output = raw_output.split()
10
+ release_idx = output.index("release") + 1
11
+ release = output[release_idx].split(".")
12
+ bare_metal_major = release[0]
13
+ bare_metal_minor = release[1][0]
14
+
15
+ return raw_output, bare_metal_major, bare_metal_minor
16
+
17
+ def _create_build_dir(buildpath):
18
+ try:
19
+ os.mkdir(buildpath)
20
+ except OSError:
21
+ if not os.path.isdir(buildpath):
22
+ print(f"Creation of the build directory {buildpath} failed")
23
+
24
+ # Check if cuda 11 is installed for compute capability 8.0
25
+ cc_flag = []
26
+ _, bare_metal_major, bare_metal_minor = _get_cuda_bare_metal_version(cpp_extension.CUDA_HOME)
27
+ if int(bare_metal_major) >= 11:
28
+ cc_flag.append('-gencode')
29
+ cc_flag.append('arch=compute_80,code=sm_80')
30
+ if int(bare_metal_minor) >= 7:
31
+ cc_flag.append('-gencode')
32
+ cc_flag.append('arch=compute_90,code=sm_90')
33
+
34
+ # Build path
35
+ srcpath = pathlib.Path(__file__).parent.absolute()
36
+ buildpath = srcpath / 'build'
37
+ _create_build_dir(buildpath)
38
+
39
+ def _cpp_extention_load_helper(name, sources, extra_cuda_flags):
40
+ return cpp_extension.load(
41
+ name=name,
42
+ sources=sources,
43
+ build_directory=buildpath,
44
+ extra_cflags=['-O3', ],
45
+ extra_cuda_cflags=['-O3',
46
+ '-gencode', 'arch=compute_70,code=sm_70',
47
+ '--use_fast_math'] + extra_cuda_flags + cc_flag,
48
+ verbose=1
49
+ )
50
+
51
+ extra_flags = []
52
+
53
+ cache_autogptq_cuda_256_sources = ["./cache_autogptq_cuda_256.cpp",
54
+ "./cache_autogptq_cuda_kernel_256.cu"]
55
+ cache_autogptq_cuda_256 = _cpp_extention_load_helper("cache_autogptq_cuda_256", cache_autogptq_cuda_256_sources, extra_flags)
modeling_qwen.py ADDED
@@ -0,0 +1,1425 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ import copy
7
+ import importlib
8
+ import math
9
+ import shutil
10
+ import pathlib
11
+ from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List, Any, Generator, Dict
12
+ import os
13
+
14
+ import torch
15
+ import torch.nn.functional as F
16
+ import torch.utils.checkpoint
17
+ import warnings
18
+ from torch.cuda.amp import autocast
19
+
20
+ from torch.nn import CrossEntropyLoss
21
+ from transformers import PreTrainedTokenizer, GenerationConfig, StoppingCriteriaList
22
+ from transformers.generation.logits_process import LogitsProcessorList
23
+
24
+ if TYPE_CHECKING:
25
+ from transformers.generation.streamers import BaseStreamer
26
+ from transformers.generation.utils import GenerateOutput
27
+ from transformers.modeling_outputs import (
28
+ BaseModelOutputWithPast,
29
+ CausalLMOutputWithPast,
30
+ )
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import logging
33
+
34
+ try:
35
+ from einops import rearrange
36
+ except ImportError:
37
+ rearrange = None
38
+ from torch import nn
39
+
40
+ SUPPORT_CUDA = torch.cuda.is_available()
41
+ SUPPORT_BF16 = SUPPORT_CUDA and torch.cuda.is_bf16_supported()
42
+ SUPPORT_FP16 = SUPPORT_CUDA and torch.cuda.get_device_capability(0)[0] >= 7
43
+ SUPPORT_TORCH2 = hasattr(torch, '__version__') and int(torch.__version__.split(".")[0]) >= 2
44
+
45
+
46
+ from .configuration_qwen import QWenConfig
47
+ from .qwen_generation_utils import (
48
+ HistoryType,
49
+ make_context,
50
+ decode_tokens,
51
+ get_stop_words_ids,
52
+ StopWordsLogitsProcessor,
53
+ )
54
+ from .audio import AudioEncoder
55
+
56
+ logger = logging.get_logger(__name__)
57
+
58
+ _CHECKPOINT_FOR_DOC = "qwen"
59
+ _CONFIG_FOR_DOC = "QWenConfig"
60
+
61
+ QWen_PRETRAINED_MODEL_ARCHIVE_LIST = ["qwen-7b"]
62
+
63
+ _ERROR_BAD_CHAT_FORMAT = """\
64
+ We detect you are probably using the pretrained model (rather than chat model) for chatting, since the chat_format in generation_config is not "chatml".
65
+ If you are directly using the model downloaded from Huggingface, please make sure you are using our "Qwen/Qwen-7B-Chat" Huggingface model (rather than "Qwen/Qwen-7B") when you call model.chat().
66
+ 我们检测到您可能在使用预训练模型(而非chat模型)进行多轮chat,因为您当前在generation_config指定的chat_format,并未设置为我们在对话中所支持的"chatml"格式。
67
+ 如果您在直接使用我们从Huggingface提供的模型,请确保您在调用model.chat()时,使用的是"Qwen/Qwen-7B-Chat"模型(而非"Qwen/Qwen-7B"预训练模型)。
68
+ """
69
+
70
+ _SENTINEL = object()
71
+ _ERROR_STREAM_IN_CHAT = """\
72
+ Pass argument `stream` to model.chat() is buggy, deprecated, and marked for removal. Please use model.chat_stream(...) instead of model.chat(..., stream=True).
73
+ 向model.chat()传入参数stream的用法可能存在Bug,该用法已被废弃,将在未来被移除。请使用model.chat_stream(...)代替model.chat(..., stream=True)。
74
+ """
75
+
76
+ _ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED = """\
77
+ We detect you have activated flash attention support, but running model computation on CPU. Please make sure that your input data has been placed on GPU. If you actually want to run CPU computation, please following the readme and set device_map="cpu" to disable flash attention when loading the model (calling AutoModelForCausalLM.from_pretrained).
78
+ 检测到您的模型已激活了flash attention支持,但正在执行CPU运算任务。如使用flash attention,请您确认模型输入已经传到GPU上。如果您确认要执行CPU运算,请您在载入模型(调用AutoModelForCausalLM.from_pretrained)时,按照readme说法,指定device_map="cpu"以禁用flash attention。
79
+ """
80
+
81
+ apply_rotary_emb_func = None
82
+ rms_norm = None
83
+ flash_attn_unpadded_func = None
84
+
85
+ def _import_flash_attn():
86
+ global apply_rotary_emb_func, rms_norm, flash_attn_unpadded_func
87
+ try:
88
+ from flash_attn.layers.rotary import apply_rotary_emb_func as __apply_rotary_emb_func
89
+ apply_rotary_emb_func = __apply_rotary_emb_func
90
+ except ImportError:
91
+ logger.warn(
92
+ "Warning: import flash_attn rotary fail, please install FlashAttention rotary to get higher efficiency "
93
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/rotary"
94
+ )
95
+
96
+ try:
97
+ from flash_attn.ops.rms_norm import rms_norm as __rms_norm
98
+ rms_norm = __rms_norm
99
+ except ImportError:
100
+ logger.warn(
101
+ "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency "
102
+ "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm"
103
+ )
104
+
105
+ try:
106
+ import flash_attn
107
+ if not hasattr(flash_attn, '__version__'):
108
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
109
+ else:
110
+ if int(flash_attn.__version__.split(".")[0]) >= 2:
111
+ from flash_attn.flash_attn_interface import flash_attn_varlen_func as __flash_attn_unpadded_func
112
+ else:
113
+ from flash_attn.flash_attn_interface import flash_attn_unpadded_func as __flash_attn_unpadded_func
114
+ flash_attn_unpadded_func = __flash_attn_unpadded_func
115
+ except ImportError:
116
+ logger.warn(
117
+ "Warning: import flash_attn fail, please install FlashAttention to get higher efficiency "
118
+ "https://github.com/Dao-AILab/flash-attention"
119
+ )
120
+
121
+ def quantize_cache_v(fdata, bits, qmax, qmin):
122
+ # b, s, head, h-dim->b, head, s, h-dim
123
+ qtype = torch.uint8
124
+ device = fdata.device
125
+ shape = fdata.shape
126
+
127
+ fdata_cal = torch.flatten(fdata, 2)
128
+ fmax = torch.amax(fdata_cal, dim=-1, keepdim=True)
129
+ fmin = torch.amin(fdata_cal, dim=-1, keepdim=True)
130
+ # Compute params
131
+ if qmax.device != fmax.device:
132
+ qmax = qmax.to(device)
133
+ qmin = qmin.to(device)
134
+ scale = (fmax - fmin) / (qmax - qmin)
135
+ zero = qmin - fmin / scale
136
+ scale = scale.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
137
+ zero = zero.unsqueeze(-1).repeat(1,1,shape[2],1).contiguous()
138
+ # Quantize
139
+ res_data = fdata / scale + zero
140
+ qdata = torch.clamp(res_data, qmin, qmax).to(qtype)
141
+ return qdata.contiguous(), scale, zero
142
+
143
+ def dequantize_cache_torch(qdata, scale, zero):
144
+ data = scale * (qdata - zero)
145
+ return data
146
+
147
+ class FlashSelfAttention(torch.nn.Module):
148
+ def __init__(
149
+ self,
150
+ causal=False,
151
+ softmax_scale=None,
152
+ attention_dropout=0.0,
153
+ ):
154
+ super().__init__()
155
+ assert flash_attn_unpadded_func is not None, (
156
+ "Please install FlashAttention first, " "e.g., with pip install flash-attn"
157
+ )
158
+ assert (
159
+ rearrange is not None
160
+ ), "Please install einops first, e.g., with pip install einops"
161
+ self.causal = causal
162
+ self.softmax_scale = softmax_scale
163
+ self.dropout_p = attention_dropout
164
+
165
+ def unpad_input(self, hidden_states, attention_mask):
166
+ valid_mask = attention_mask.squeeze(1).squeeze(1).eq(0)
167
+ seqlens_in_batch = valid_mask.sum(dim=-1, dtype=torch.int32)
168
+ indices = torch.nonzero(valid_mask.flatten(), as_tuple=False).flatten()
169
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
170
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
171
+ hidden_states = hidden_states[indices]
172
+ return hidden_states, indices, cu_seqlens, max_seqlen_in_batch
173
+
174
+ def pad_input(self, hidden_states, indices, batch, seqlen):
175
+ output = torch.zeros(batch * seqlen, *hidden_states.shape[1:], device=hidden_states.device,
176
+ dtype=hidden_states.dtype)
177
+ output[indices] = hidden_states
178
+ return rearrange(output, '(b s) ... -> b s ...', b=batch)
179
+
180
+ def forward(self, q, k, v, attention_mask=None):
181
+ assert all((i.dtype in [torch.float16, torch.bfloat16] for i in (q, k, v)))
182
+ assert all((i.is_cuda for i in (q, k, v)))
183
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
184
+ seqlen_k = k.shape[1]
185
+ seqlen_out = seqlen_q
186
+
187
+ q, k, v = [rearrange(x, "b s ... -> (b s) ...") for x in [q, k, v]]
188
+ cu_seqlens_q = torch.arange(
189
+ 0,
190
+ (batch_size + 1) * seqlen_q,
191
+ step=seqlen_q,
192
+ dtype=torch.int32,
193
+ device=q.device,
194
+ )
195
+
196
+ if batch_size > 1 and attention_mask is not None:
197
+ k, indices_k, cu_seqlens_k, seqlen_k = self.unpad_input(k, attention_mask)
198
+ if q.size(0) == v.size(0):
199
+ q = q[indices_k]
200
+ cu_seqlens_q = cu_seqlens_k
201
+ seqlen_q = seqlen_k
202
+ v = v[indices_k]
203
+ else:
204
+ cu_seqlens_k = torch.arange(
205
+ 0,
206
+ (batch_size + 1) * seqlen_k,
207
+ step=seqlen_k,
208
+ dtype=torch.int32,
209
+ device=q.device,
210
+ )
211
+
212
+ if self.training:
213
+ assert seqlen_k == seqlen_q
214
+ is_causal = self.causal
215
+ dropout_p = self.dropout_p
216
+ else:
217
+ is_causal = seqlen_q == seqlen_k
218
+ dropout_p = 0
219
+
220
+ output = flash_attn_unpadded_func(
221
+ q,
222
+ k,
223
+ v,
224
+ cu_seqlens_q,
225
+ cu_seqlens_k,
226
+ seqlen_q,
227
+ seqlen_k,
228
+ dropout_p,
229
+ softmax_scale=self.softmax_scale,
230
+ causal=is_causal,
231
+ )
232
+ if batch_size > 1 and attention_mask is not None and seqlen_q == seqlen_k:
233
+ output = self.pad_input(output, indices_k, batch_size, seqlen_out)
234
+ else:
235
+ new_shape = (batch_size, output.shape[0] // batch_size) + output.shape[1:]
236
+ output = output.view(new_shape)
237
+ return output
238
+
239
+
240
+ class QWenAttention(nn.Module):
241
+ def __init__(self, config):
242
+ super().__init__()
243
+
244
+ self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
245
+ self.seq_length = config.seq_length
246
+
247
+ self.hidden_size = config.hidden_size
248
+ self.split_size = config.hidden_size
249
+ self.num_heads = config.num_attention_heads
250
+ self.head_dim = self.hidden_size // self.num_heads
251
+
252
+ self.use_flash_attn = config.use_flash_attn
253
+ self.scale_attn_weights = True
254
+
255
+ self.projection_size = config.kv_channels * config.num_attention_heads
256
+
257
+ assert self.projection_size % config.num_attention_heads == 0
258
+ self.hidden_size_per_attention_head = (
259
+ self.projection_size // config.num_attention_heads
260
+ )
261
+
262
+ self.c_attn = nn.Linear(config.hidden_size, 3 * self.projection_size)
263
+
264
+ self.c_proj = nn.Linear(
265
+ config.hidden_size, self.projection_size, bias=not config.no_bias
266
+ )
267
+
268
+ self.is_fp32 = not (config.bf16 or config.fp16)
269
+ if (
270
+ self.use_flash_attn
271
+ and flash_attn_unpadded_func is not None
272
+ and not self.is_fp32
273
+ ):
274
+ self.core_attention_flash = FlashSelfAttention(
275
+ causal=True, attention_dropout=config.attn_dropout_prob
276
+ )
277
+ self.bf16 = config.bf16
278
+
279
+ self.use_dynamic_ntk = config.use_dynamic_ntk
280
+ self.use_logn_attn = config.use_logn_attn
281
+
282
+ logn_list = [
283
+ math.log(i, self.seq_length) if i > self.seq_length else 1
284
+ for i in range(1, 32768)
285
+ ]
286
+ logn_tensor = torch.tensor(logn_list)[None, :, None, None]
287
+ self.register_buffer("logn_tensor", logn_tensor, persistent=False)
288
+
289
+ self.attn_dropout = nn.Dropout(config.attn_dropout_prob)
290
+ self.softmax_in_fp32 = config.softmax_in_fp32 if hasattr(config, 'softmax_in_fp32') else False
291
+ self.use_cache_quantization = config.use_cache_quantization if hasattr(config, 'use_cache_quantization') else False
292
+ self.use_cache_kernel = config.use_cache_kernel if hasattr(config,'use_cache_kernel') else False
293
+ cache_dtype = torch.float
294
+ if self.bf16:
295
+ cache_dtype=torch.bfloat16
296
+ elif config.fp16:
297
+ cache_dtype = torch.float16
298
+ self.cache_qmax = torch.tensor(torch.iinfo(torch.uint8).max, dtype=cache_dtype)
299
+ self.cache_qmin = torch.tensor(torch.iinfo(torch.uint8).min, dtype=cache_dtype)
300
+
301
+ if config.use_cache_quantization and config.use_cache_kernel:
302
+ # pre check if the support files existing
303
+ module_root = pathlib.Path(__file__).parent
304
+ src_files = ("cache_autogptq_cuda_256.cpp", "cache_autogptq_cuda_kernel_256.cu")
305
+ if any(not (module_root/src).is_file() for src in src_files):
306
+ warnings.warn("KV cache kernel source files (.cpp and .cu) not found.")
307
+ self.cache_kernels = None
308
+ else:
309
+ try:
310
+ from .cpp_kernels import cache_autogptq_cuda_256
311
+ self.cache_kernels = cache_autogptq_cuda_256
312
+ except ImportError:
313
+ warnings.warn("Failed to import KV cache kernels.")
314
+ self.cache_kernels = None
315
+
316
+ def _attn(self, query, key, value, registered_causal_mask, attention_mask=None, head_mask=None):
317
+ device = query.device
318
+ if self.use_cache_quantization:
319
+ qk, qk_scale, qk_zero = key
320
+ if self.use_cache_kernel and self.cache_kernels is not None:
321
+ shape = query.shape[:-1] + (qk.shape[-2],)
322
+ attn_weights = torch.zeros(shape, dtype=torch.float16, device=device)
323
+ self.cache_kernels.vecquant8matmul_batched_faster_old(
324
+ query.contiguous() if query.dtype == torch.float16 else query.to(torch.float16).contiguous(),
325
+ qk.transpose(-1, -2).contiguous(),
326
+ attn_weights,
327
+ qk_scale.contiguous() if qk_scale.dtype == torch.float16 else qk_scale.to(torch.float16).contiguous(),
328
+ qk_zero.contiguous()if qk_zero.dtype == torch.float16 else qk_zero.to(torch.float16).contiguous())
329
+ # attn_weights = attn_weights.to(query.dtype).contiguous()
330
+ else:
331
+ key = dequantize_cache_torch(qk, qk_scale, qk_zero)
332
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
333
+ else:
334
+ attn_weights = torch.matmul(query, key.transpose(-1, -2))
335
+
336
+ if self.scale_attn_weights:
337
+ if self.use_cache_quantization:
338
+ size_temp = value[0].size(-1)
339
+ else:
340
+ size_temp = value.size(-1)
341
+ attn_weights = attn_weights / torch.full(
342
+ [],
343
+ size_temp ** 0.5,
344
+ dtype=attn_weights.dtype,
345
+ device=attn_weights.device,
346
+ )
347
+ if self.use_cache_quantization:
348
+ query_length, key_length = query.size(-2), key[0].size(-2)
349
+ else:
350
+ query_length, key_length = query.size(-2), key.size(-2)
351
+ causal_mask = registered_causal_mask[
352
+ :, :, key_length - query_length : key_length, :key_length
353
+ ]
354
+ mask_value = torch.finfo(attn_weights.dtype).min
355
+ mask_value = torch.full([], mask_value, dtype=attn_weights.dtype).to(
356
+ attn_weights.device
357
+ )
358
+ attn_weights = torch.where(
359
+ causal_mask, attn_weights.to(attn_weights.dtype), mask_value
360
+ )
361
+
362
+ if attention_mask is not None:
363
+ attn_weights = attn_weights + attention_mask
364
+
365
+ if self.softmax_in_fp32:
366
+ attn_weights = nn.functional.softmax(attn_weights.float(), dim=-1)
367
+ else:
368
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
369
+
370
+ attn_weights = attn_weights.type(query.dtype)
371
+ attn_weights = self.attn_dropout(attn_weights)
372
+
373
+ if head_mask is not None:
374
+ attn_weights = attn_weights * head_mask
375
+
376
+ if self.use_cache_quantization:
377
+ qv, qv_scale, qv_zero = value
378
+ if self.use_cache_kernel and self.cache_kernels is not None:
379
+ shape = attn_weights.shape[:-1] + (query.shape[-1],)
380
+ attn_output = torch.zeros(shape, dtype=torch.float16, device=device)
381
+ self.cache_kernels.vecquant8matmul_batched_column_compression_faster_old(
382
+ attn_weights.contiguous() if attn_weights.dtype == torch.float16 else attn_weights.to(torch.float16).contiguous(),
383
+ qv.contiguous(), # dtype: int32
384
+ attn_output,
385
+ qv_scale.contiguous() if qv_scale.dtype == torch.float16 else qv_scale.to(torch.float16).contiguous(),
386
+ qv_zero.contiguous() if qv_zero.dtype == torch.float16 else qv_zero.to(torch.float16).contiguous())
387
+ if attn_output.dtype != query.dtype:
388
+ attn_output = attn_output.to(query.dtype)
389
+ attn_weights = attn_weights.to(query.dtype)
390
+ else:
391
+ value = dequantize_cache_torch(qv, qv_scale, qv_zero)
392
+ attn_output = torch.matmul(attn_weights, value)
393
+ else:
394
+ attn_output = torch.matmul(attn_weights, value)
395
+
396
+ attn_output = attn_output.transpose(1, 2)
397
+
398
+ return attn_output, attn_weights
399
+
400
+ def _split_heads(self, tensor, num_heads, attn_head_size):
401
+ new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
402
+ tensor = tensor.view(new_shape)
403
+ return tensor
404
+
405
+ def _merge_heads(self, tensor, num_heads, attn_head_size):
406
+ tensor = tensor.contiguous()
407
+ new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
408
+ return tensor.view(new_shape)
409
+
410
+ def forward(
411
+ self,
412
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
413
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
414
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
415
+ attention_mask: Optional[torch.FloatTensor] = None,
416
+ head_mask: Optional[torch.FloatTensor] = None,
417
+ encoder_hidden_states: Optional[torch.Tensor] = None,
418
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
419
+ output_attentions: Optional[bool] = False,
420
+ use_cache: Optional[bool] = False,
421
+ ):
422
+ mixed_x_layer = self.c_attn(hidden_states)
423
+
424
+ query, key, value = mixed_x_layer.split(self.split_size, dim=2)
425
+
426
+ query = self._split_heads(query, self.num_heads, self.head_dim)
427
+ key = self._split_heads(key, self.num_heads, self.head_dim)
428
+ value = self._split_heads(value, self.num_heads, self.head_dim)
429
+
430
+ if rotary_pos_emb_list is not None:
431
+ cur_len = query.shape[1]
432
+ if len(rotary_pos_emb_list) == 1:
433
+ rotary_pos_emb = rotary_pos_emb_list[0]
434
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
435
+ rotary_pos_emb = (rotary_pos_emb,) * 2
436
+ q_pos_emb, k_pos_emb = rotary_pos_emb
437
+ # Slice the pos emb for current inference
438
+ query = apply_rotary_pos_emb(query, q_pos_emb)
439
+ key = apply_rotary_pos_emb(key, k_pos_emb)
440
+ else:
441
+ query_list = []
442
+ key_list = []
443
+ for i, rotary_pos_emb in enumerate(rotary_pos_emb_list):
444
+ rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
445
+ rotary_pos_emb = (rotary_pos_emb,) * 2
446
+ q_pos_emb, k_pos_emb = rotary_pos_emb
447
+ # Slice the pos emb for current inference
448
+ query_list += [apply_rotary_pos_emb(query[i:i+1, :, :], q_pos_emb)]
449
+ key_list += [apply_rotary_pos_emb(key[i:i+1, :, :], k_pos_emb)]
450
+ query = torch.cat(query_list, dim=0)
451
+ key = torch.cat(key_list, dim=0)
452
+
453
+ if self.use_cache_quantization:
454
+ key = quantize_cache_v(key.permute(0, 2, 1, 3),
455
+ bits=8,
456
+ qmin=self.cache_qmin,
457
+ qmax=self.cache_qmax)
458
+ value = quantize_cache_v(value.permute(0, 2, 1, 3),
459
+ bits=8,
460
+ qmin=self.cache_qmin,
461
+ qmax=self.cache_qmax)
462
+
463
+
464
+ if layer_past is not None:
465
+ past_key, past_value = layer_past[0], layer_past[1]
466
+ if self.use_cache_quantization:
467
+ # use_cache_quantization:
468
+ # present=((q_key,key_scale,key_zero_point),
469
+ # (q_value,value_scale,value_zero_point))
470
+ key = (torch.cat((past_key[0], key[0]), dim=2),
471
+ torch.cat((past_key[1], key[1]), dim=2),
472
+ torch.cat((past_key[2], key[2]), dim=2))
473
+ value = (torch.cat((past_value[0], value[0]), dim=2),
474
+ torch.cat((past_value[1], value[1]), dim=2),
475
+ torch.cat((past_value[2], value[2]), dim=2))
476
+ else:
477
+ # not use_cache_quantization:
478
+ # present=(key,value)
479
+ key = torch.cat((past_key, key), dim=1)
480
+ value = torch.cat((past_value, value), dim=1)
481
+
482
+ if use_cache:
483
+ present = (key, value)
484
+ else:
485
+ present = None
486
+
487
+ if self.use_logn_attn and not self.training:
488
+ if self.use_cache_quantization:
489
+ seq_start = key[0].size(2) - query.size(1)
490
+ seq_end = key[0].size(2)
491
+ else:
492
+ seq_start = key.size(1) - query.size(1)
493
+ seq_end = key.size(1)
494
+ logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :].type_as(query)
495
+ query = query * logn_tensor.expand_as(query)
496
+
497
+ if (
498
+ self.use_flash_attn
499
+ and flash_attn_unpadded_func is not None
500
+ and not self.is_fp32
501
+ and query.is_cuda
502
+ ):
503
+ q, k, v = query, key, value
504
+ attn_output = self.core_attention_flash(q, k, v, attention_mask=attention_mask)
505
+ else:
506
+ registered_causal_mask = torch.tril(
507
+ torch.ones((key.size(1), key.size(1)), dtype=torch.bool, device=key.device)
508
+ ).view(1, 1, key.size(1), key.size(1))
509
+ query = query.permute(0, 2, 1, 3)
510
+ if not self.use_cache_quantization:
511
+ key = key.permute(0, 2, 1, 3)
512
+ value = value.permute(0, 2, 1, 3)
513
+ if (
514
+ registered_causal_mask is None
515
+ and self.use_flash_attn
516
+ and flash_attn_unpadded_func is not None
517
+ and not self.is_fp32
518
+ and not query.is_cuda
519
+ ):
520
+ raise Exception(_ERROR_INPUT_CPU_QUERY_WITH_FLASH_ATTN_ACTIVATED)
521
+
522
+ if not self.use_cache_quantization and SUPPORT_TORCH2:
523
+ causal_mask = registered_causal_mask[
524
+ :, :, key.size(-2) - query.size(-2): key.size(-2), :key.size(-2)
525
+ ]
526
+ if attention_mask is not None:
527
+ attention_mask = attention_mask.expand(
528
+ -1, -1, causal_mask.size(2), -1
529
+ ).masked_fill(~causal_mask, torch.finfo(query.dtype).min)
530
+ else:
531
+ attention_mask = causal_mask
532
+ attn_output = F.scaled_dot_product_attention(
533
+ query, key, value, attn_mask=attention_mask
534
+ ).transpose(1, 2)
535
+ attn_weight = None
536
+ else:
537
+ attn_output, attn_weight = self._attn(
538
+ query, key, value, registered_causal_mask, attention_mask, head_mask
539
+ )
540
+ context_layer = self._merge_heads(
541
+ attn_output, self.num_heads, self.head_dim
542
+ )
543
+
544
+ attn_output = self.c_proj(context_layer)
545
+
546
+ outputs = (attn_output, present)
547
+ if output_attentions:
548
+ if (
549
+ self.use_flash_attn
550
+ and flash_attn_unpadded_func is not None
551
+ and not self.is_fp32
552
+ ):
553
+ raise ValueError("Cannot output attentions while using flash-attn")
554
+ else:
555
+ outputs += (attn_weight,)
556
+
557
+ return outputs
558
+
559
+
560
+ class QWenMLP(nn.Module):
561
+ def __init__(self, config):
562
+ super().__init__()
563
+ self.w1 = nn.Linear(
564
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
565
+ )
566
+ self.w2 = nn.Linear(
567
+ config.hidden_size, config.intermediate_size // 2, bias=not config.no_bias
568
+ )
569
+ ff_dim_in = config.intermediate_size // 2
570
+ self.c_proj = nn.Linear(ff_dim_in, config.hidden_size, bias=not config.no_bias)
571
+
572
+ def forward(self, hidden_states):
573
+ a1 = self.w1(hidden_states)
574
+ a2 = self.w2(hidden_states)
575
+ intermediate_parallel = a1 * F.silu(a2)
576
+ output = self.c_proj(intermediate_parallel)
577
+ return output
578
+
579
+ class QWenBlock(nn.Module):
580
+ def __init__(self, config):
581
+ super().__init__()
582
+ hidden_size = config.hidden_size
583
+ self.bf16 = config.bf16
584
+
585
+ self.ln_1 = RMSNorm(
586
+ hidden_size,
587
+ eps=config.layer_norm_epsilon,
588
+ )
589
+ self.attn = QWenAttention(config)
590
+ self.ln_2 = RMSNorm(
591
+ hidden_size,
592
+ eps=config.layer_norm_epsilon,
593
+ )
594
+
595
+ self.mlp = QWenMLP(config)
596
+
597
+ def forward(
598
+ self,
599
+ hidden_states: Optional[Tuple[torch.FloatTensor]],
600
+ rotary_pos_emb_list: Optional[List[List[torch.Tensor]]] = None,
601
+ layer_past: Optional[Tuple[torch.Tensor]] = None,
602
+ attention_mask: Optional[torch.FloatTensor] = None,
603
+ head_mask: Optional[torch.FloatTensor] = None,
604
+ encoder_hidden_states: Optional[torch.Tensor] = None,
605
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
606
+ use_cache: Optional[bool] = False,
607
+ output_attentions: Optional[bool] = False,
608
+ ):
609
+ layernorm_output = self.ln_1(hidden_states)
610
+
611
+ attn_outputs = self.attn(
612
+ layernorm_output,
613
+ rotary_pos_emb_list,
614
+ layer_past=layer_past,
615
+ attention_mask=attention_mask,
616
+ head_mask=head_mask,
617
+ use_cache=use_cache,
618
+ output_attentions=output_attentions,
619
+ )
620
+ attn_output = attn_outputs[0]
621
+
622
+ outputs = attn_outputs[1:]
623
+
624
+ residual = hidden_states
625
+ layernorm_input = attn_output + residual
626
+
627
+ layernorm_output = self.ln_2(layernorm_input)
628
+
629
+ residual = layernorm_input
630
+ mlp_output = self.mlp(layernorm_output)
631
+ hidden_states = residual + mlp_output
632
+
633
+ if use_cache:
634
+ outputs = (hidden_states,) + outputs
635
+ else:
636
+ outputs = (hidden_states,) + outputs[1:]
637
+
638
+ return outputs
639
+
640
+
641
+ class QWenPreTrainedModel(PreTrainedModel):
642
+ config_class = QWenConfig
643
+ base_model_prefix = "transformer"
644
+ is_parallelizable = False
645
+ supports_gradient_checkpointing = True
646
+ _no_split_modules = ["QWenBlock"]
647
+
648
+ def __init__(self, *inputs, **kwargs):
649
+ super().__init__(*inputs, **kwargs)
650
+
651
+ def _init_weights(self, module):
652
+ """Initialize the weights."""
653
+ if isinstance(module, nn.Linear):
654
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
655
+ if module.bias is not None:
656
+ module.bias.data.zero_()
657
+ elif isinstance(module, nn.Embedding):
658
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
659
+ if module.padding_idx is not None:
660
+ module.weight.data[module.padding_idx].zero_()
661
+ elif isinstance(module, RMSNorm):
662
+ module.weight.data.fill_(1.0)
663
+
664
+ for name, p in module.named_parameters():
665
+ if name == "c_proj.weight":
666
+ p.data.normal_(
667
+ mean=0.0,
668
+ std=(
669
+ self.config.initializer_range
670
+ / math.sqrt(2 * self.config.num_hidden_layers)
671
+ ),
672
+ )
673
+
674
+ def _set_gradient_checkpointing(self, module, value=False):
675
+ if isinstance(module, QWenModel):
676
+ module.gradient_checkpointing = value
677
+
678
+
679
+ class QWenModel(QWenPreTrainedModel):
680
+ _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
681
+
682
+ def __init__(self, config):
683
+ super().__init__(config)
684
+ self.vocab_size = config.vocab_size
685
+ self.num_hidden_layers = config.num_hidden_layers
686
+ self.embed_dim = config.hidden_size
687
+ self.use_cache_quantization = self.config.use_cache_quantization if hasattr(self.config, 'use_cache_quantization') else False
688
+
689
+ self.gradient_checkpointing = False
690
+ self.use_dynamic_ntk = config.use_dynamic_ntk
691
+ self.seq_length = config.seq_length
692
+
693
+ self.wte = nn.Embedding(self.vocab_size, self.embed_dim)
694
+
695
+ self.drop = nn.Dropout(config.emb_dropout_prob)
696
+
697
+ if config.rotary_pct == 1.0:
698
+ self.rotary_ndims = None
699
+ else:
700
+ assert config.rotary_pct < 1
701
+ self.rotary_ndims = int(
702
+ config.kv_channels * config.rotary_pct
703
+ )
704
+ dim = (
705
+ self.rotary_ndims
706
+ if self.rotary_ndims is not None
707
+ else config.kv_channels
708
+ )
709
+ self.rotary_emb = RotaryEmbedding(dim, base=config.rotary_emb_base)
710
+
711
+ self.use_flash_attn = config.use_flash_attn
712
+ self.is_fp32 = not (config.bf16 or config.fp16)
713
+
714
+ self.h = nn.ModuleList(
715
+ [
716
+ QWenBlock(
717
+ config
718
+ )
719
+ for i in range(config.num_hidden_layers)
720
+ ]
721
+ )
722
+ self.ln_f = RMSNorm(
723
+ self.embed_dim,
724
+ eps=config.layer_norm_epsilon,
725
+ )
726
+
727
+ self.audio = AudioEncoder(**config.audio)
728
+
729
+ self.post_init()
730
+
731
+ def get_input_embeddings(self):
732
+ return self.wte
733
+
734
+ def set_input_embeddings(self, new_embeddings):
735
+ self.wte = new_embeddings
736
+
737
+ def get_ntk_alpha(self, true_seq_len):
738
+ context_value = math.log(true_seq_len / self.seq_length, 2) + 1
739
+ ntk_alpha = 2 ** math.ceil(context_value) - 1
740
+ ntk_alpha = max(ntk_alpha, 1)
741
+ return ntk_alpha
742
+
743
+ def forward(
744
+ self,
745
+ input_ids: Optional[torch.LongTensor] = None,
746
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
747
+ attention_mask: Optional[torch.FloatTensor] = None,
748
+ token_type_ids: Optional[torch.LongTensor] = None,
749
+ position_ids: Optional[torch.LongTensor] = None,
750
+ head_mask: Optional[torch.FloatTensor] = None,
751
+ inputs_embeds: Optional[torch.FloatTensor] = None,
752
+ encoder_hidden_states: Optional[torch.Tensor] = None,
753
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
754
+ use_cache: Optional[bool] = None,
755
+ output_attentions: Optional[bool] = None,
756
+ output_hidden_states: Optional[bool] = None,
757
+ return_dict: Optional[bool] = None,
758
+ audio_info: Dict = None
759
+ ):
760
+ if past_key_values is None and torch.any(input_ids == self.config.audio['audio_start_id']):
761
+ bos_pos = torch.where(input_ids == self.config.audio['audio_start_id'])
762
+ eos_pos = torch.where(input_ids == self.config.audio['audio_start_id'] + 1)
763
+ assert (bos_pos[0] == eos_pos[0]).all()
764
+ audio_pos = torch.stack((bos_pos[0], bos_pos[1], eos_pos[1]), dim=1)
765
+ if isinstance(audio_info, Dict):
766
+ audios = audio_info["input_audios"]
767
+ audio_span_tokens = audio_info["audio_span_tokens"]
768
+ input_audio_lengths = audio_info["input_audio_lengths"]
769
+ audios = self.audio.encode(audios,input_audio_lengths, audio_span_tokens)
770
+ else:
771
+ audios = torch.concat([_["input_audios"] for _ in audio_info])
772
+ input_audio_lengths = torch.concat([_["input_audio_lengths"] for _ in audio_info])
773
+ audio_span_tokens = []
774
+ for _ in audio_info:
775
+ audio_span_tokens.extend(_['audio_span_tokens'])
776
+ audios = self.audio.encode(audios, input_audio_lengths, audio_span_tokens)
777
+
778
+ else:
779
+ audios = None
780
+
781
+ output_attentions = (
782
+ output_attentions
783
+ if output_attentions is not None
784
+ else self.config.output_attentions
785
+ )
786
+ output_hidden_states = (
787
+ output_hidden_states
788
+ if output_hidden_states is not None
789
+ else self.config.output_hidden_states
790
+ )
791
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
792
+ return_dict = (
793
+ return_dict if return_dict is not None else self.config.use_return_dict
794
+ )
795
+
796
+ if input_ids is not None and inputs_embeds is not None:
797
+ raise ValueError(
798
+ "You cannot specify both input_ids and inputs_embeds at the same time"
799
+ )
800
+ elif input_ids is not None:
801
+ input_shape = input_ids.size()
802
+ input_ids = input_ids.view(-1, input_shape[-1])
803
+ batch_size = input_ids.shape[0]
804
+ elif inputs_embeds is not None:
805
+ input_shape = inputs_embeds.size()[:-1]
806
+ batch_size = inputs_embeds.shape[0]
807
+ else:
808
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
809
+
810
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
811
+
812
+ if token_type_ids is not None:
813
+ token_type_ids = token_type_ids.view(-1, input_shape[-1])
814
+ if position_ids is not None:
815
+ position_ids = position_ids.view(-1, input_shape[-1])
816
+
817
+ if past_key_values is None:
818
+ past_length = 0
819
+ past_key_values = tuple([None] * len(self.h))
820
+ else:
821
+ if self.use_cache_quantization:
822
+ past_length = past_key_values[0][0][0].size(2)
823
+ else:
824
+ past_length = past_key_values[0][0].size(-2)
825
+ if position_ids is None:
826
+ position_ids = torch.arange(
827
+ past_length,
828
+ input_shape[-1] + past_length,
829
+ dtype=torch.long,
830
+ device=device,
831
+ )
832
+ position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
833
+
834
+ if attention_mask is not None:
835
+ if batch_size <= 0:
836
+ raise ValueError("batch_size has to be defined and > 0")
837
+ attention_mask = attention_mask.view(batch_size, -1)
838
+ attention_mask = attention_mask[:, None, None, :]
839
+ attention_mask = attention_mask.to(dtype=self.dtype)
840
+ attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
841
+
842
+ encoder_attention_mask = None
843
+ head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
844
+
845
+ if inputs_embeds is None:
846
+ inputs_embeds = self.wte(input_ids)
847
+ hidden_states = inputs_embeds
848
+
849
+ kv_seq_len = hidden_states.size()[1]
850
+ if past_key_values[0] is not None:
851
+ # past key values[0][0] shape: bs * seq_len * head_num * dim
852
+ if self.use_cache_quantization:
853
+ kv_seq_len += past_key_values[0][0][0].shape[2]
854
+ else:
855
+ kv_seq_len += past_key_values[0][0].shape[1]
856
+
857
+ if self.training or not self.use_dynamic_ntk:
858
+ ntk_alpha_list = [1.0]
859
+ elif kv_seq_len != hidden_states.size()[1]:
860
+ ntk_alpha_list = self.rotary_emb._ntk_alpha_cached_list
861
+ else:
862
+ ntk_alpha_list = []
863
+ if attention_mask is not None and kv_seq_len > self.seq_length:
864
+ true_seq_lens = attention_mask.squeeze(1).squeeze(1).eq(0).sum(dim=-1, dtype=torch.int32)
865
+ for i in range(hidden_states.size()[0]):
866
+ true_seq_len = true_seq_lens[i].item()
867
+ ntk_alpha = self.get_ntk_alpha(true_seq_len)
868
+ ntk_alpha_list.append(ntk_alpha)
869
+ else:
870
+ ntk_alpha = self.get_ntk_alpha(kv_seq_len)
871
+ ntk_alpha_list.append(ntk_alpha)
872
+ self.rotary_emb._ntk_alpha_cached_list = ntk_alpha_list
873
+ rotary_pos_emb_list = [
874
+ self.rotary_emb(kv_seq_len, ntk_alpha=ntk_alpha) for ntk_alpha in ntk_alpha_list
875
+ ]
876
+
877
+ hidden_states = self.drop(hidden_states)
878
+ if audios is not None:
879
+ for idx, (i, a, b) in enumerate(audio_pos):
880
+ hidden_states[i][a : b+1] = audios[idx]
881
+ output_shape = input_shape + (hidden_states.size(-1),)
882
+
883
+ if self.gradient_checkpointing and self.training:
884
+ if use_cache:
885
+ logger.warning_once(
886
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
887
+ )
888
+ use_cache = False
889
+
890
+ presents = () if use_cache else None
891
+ all_self_attentions = () if output_attentions else None
892
+ all_hidden_states = () if output_hidden_states else None
893
+ for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
894
+
895
+ if output_hidden_states:
896
+ all_hidden_states = all_hidden_states + (hidden_states,)
897
+
898
+ if self.gradient_checkpointing and self.training:
899
+
900
+ def create_custom_forward(module):
901
+ def custom_forward(*inputs):
902
+ # None for past_key_value
903
+ return module(*inputs, use_cache, output_attentions)
904
+
905
+ return custom_forward
906
+
907
+ outputs = torch.utils.checkpoint.checkpoint(
908
+ create_custom_forward(block),
909
+ hidden_states,
910
+ rotary_pos_emb_list,
911
+ None,
912
+ attention_mask,
913
+ head_mask[i],
914
+ encoder_hidden_states,
915
+ encoder_attention_mask,
916
+ )
917
+ else:
918
+
919
+ outputs = block(
920
+ hidden_states,
921
+ layer_past=layer_past,
922
+ rotary_pos_emb_list=rotary_pos_emb_list,
923
+ attention_mask=attention_mask,
924
+ head_mask=head_mask[i],
925
+ encoder_hidden_states=encoder_hidden_states,
926
+ encoder_attention_mask=encoder_attention_mask,
927
+ use_cache=use_cache,
928
+ output_attentions=output_attentions,
929
+ )
930
+
931
+ hidden_states = outputs[0]
932
+ if use_cache is True:
933
+ presents = presents + (outputs[1],)
934
+
935
+ if output_attentions:
936
+ all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
937
+
938
+ hidden_states = self.ln_f(hidden_states)
939
+ hidden_states = hidden_states.view(output_shape)
940
+ # Add last hidden state
941
+ if output_hidden_states:
942
+ all_hidden_states = all_hidden_states + (hidden_states,)
943
+
944
+ if not return_dict:
945
+ return tuple(
946
+ v for v in [hidden_states, presents, all_hidden_states] if v is not None
947
+ )
948
+
949
+ return BaseModelOutputWithPast(
950
+ last_hidden_state=hidden_states,
951
+ past_key_values=presents,
952
+ hidden_states=all_hidden_states,
953
+ attentions=all_self_attentions,
954
+ )
955
+
956
+
957
+ class QWenLMHeadModel(QWenPreTrainedModel):
958
+ _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.rotary_emb\.inv_freq"]
959
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.attn\.masked_bias"]
960
+
961
+ def __init__(self, config):
962
+ super().__init__(config)
963
+ assert (
964
+ config.bf16 + config.fp16 + config.fp32 <= 1
965
+ ), "Only one of \"bf16\", \"fp16\", \"fp32\" can be true"
966
+
967
+ autoset_precision = config.bf16 + config.fp16 + config.fp32 == 0
968
+
969
+ if autoset_precision:
970
+ if SUPPORT_BF16:
971
+ logger.warn(
972
+ "The model is automatically converting to bf16 for faster inference. "
973
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
974
+ )
975
+ config.bf16 = True
976
+ elif SUPPORT_FP16:
977
+ logger.warn(
978
+ "The model is automatically converting to fp16 for faster inference. "
979
+ "If you want to disable the automatic precision, please manually add bf16/fp16/fp32=True to \"AutoModelForCausalLM.from_pretrained\"."
980
+ )
981
+ config.fp16 = True
982
+ else:
983
+ config.fp32 = True
984
+
985
+ if config.bf16 and SUPPORT_CUDA and not SUPPORT_BF16:
986
+ logger.warn("Your device does NOT seem to support bf16, you can switch to fp16 or fp32 by by passing fp16/fp32=True in \"AutoModelForCausalLM.from_pretrained\".")
987
+ if config.fp16 and SUPPORT_CUDA and not SUPPORT_FP16:
988
+ logger.warn("Your device does NOT support faster inference with fp16, please switch to fp32 which is likely to be faster")
989
+ if config.fp32:
990
+ if SUPPORT_BF16:
991
+ logger.warn("Your device support faster inference by passing bf16=True in \"AutoModelForCausalLM.from_pretrained\".")
992
+ elif SUPPORT_FP16:
993
+ logger.warn("Your device support faster inference by passing fp16=True in \"AutoModelForCausalLM.from_pretrained\".")
994
+
995
+ if config.use_flash_attn == "auto":
996
+ if config.bf16 or config.fp16:
997
+ logger.warn("Try importing flash-attention for faster inference...")
998
+ config.use_flash_attn = True
999
+ else:
1000
+ config.use_flash_attn = False
1001
+ if config.use_flash_attn and config.fp32:
1002
+ logger.warn("Flash attention will be disabled because it does NOT support fp32.")
1003
+
1004
+ if config.use_flash_attn:
1005
+ _import_flash_attn()
1006
+
1007
+ self.transformer = QWenModel(config)
1008
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1009
+
1010
+ if config.bf16:
1011
+ self.transformer.bfloat16()
1012
+ self.lm_head.bfloat16()
1013
+ if config.fp16:
1014
+ self.transformer.half()
1015
+ self.lm_head.half()
1016
+ self.post_init()
1017
+
1018
+ @classmethod
1019
+ def from_pretrained(
1020
+ cls,
1021
+ pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
1022
+ *model_args,
1023
+ config=None,
1024
+ cache_dir=None,
1025
+ **kwargs,
1026
+ ):
1027
+ if os.path.isdir(pretrained_model_name_or_path):
1028
+ # Local Directory of Models
1029
+ mel_filters_path = os.path.join(pretrained_model_name_or_path, 'mel_filters.npz')
1030
+ tgt_cache_path = os.path.join(os.path.dirname(__file__), 'mel_filters.npz')
1031
+ shutil.copy(mel_filters_path, tgt_cache_path)
1032
+ else:
1033
+ # Loading from huggingface repo
1034
+ from huggingface_hub import hf_hub_download
1035
+ hf_hub_download(repo_id=pretrained_model_name_or_path, filename="mel_filters.npz",
1036
+ token=kwargs.get('token', None), local_dir=os.path.dirname(__file__))
1037
+ return super().from_pretrained(pretrained_model_name_or_path, *model_args, config=config, cache_dir=cache_dir,
1038
+ **kwargs)
1039
+
1040
+ def get_output_embeddings(self):
1041
+ return self.lm_head
1042
+
1043
+ def set_output_embeddings(self, new_embeddings):
1044
+ self.lm_head = new_embeddings
1045
+
1046
+ def prepare_inputs_for_generation(
1047
+ self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
1048
+ ):
1049
+ audio_info = kwargs.pop("audio_info", None)
1050
+ token_type_ids = kwargs.get("token_type_ids", None)
1051
+ if past_key_values:
1052
+ input_ids = input_ids[:, -1].unsqueeze(-1)
1053
+ if token_type_ids is not None:
1054
+ token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
1055
+
1056
+ attention_mask = kwargs.get("attention_mask", None)
1057
+ position_ids = kwargs.get("position_ids", None)
1058
+
1059
+ if attention_mask is not None and position_ids is None:
1060
+ position_ids = attention_mask.long().cumsum(-1) - 1
1061
+ position_ids.masked_fill_(attention_mask == 0, 1)
1062
+ if past_key_values:
1063
+ position_ids = position_ids[:, -1].unsqueeze(-1)
1064
+ else:
1065
+ position_ids = None
1066
+
1067
+ if inputs_embeds is not None and past_key_values is None:
1068
+ model_inputs = {"inputs_embeds": inputs_embeds}
1069
+ else:
1070
+ model_inputs = {"input_ids": input_ids}
1071
+
1072
+ model_inputs.update(
1073
+ {
1074
+ "past_key_values": past_key_values,
1075
+ "use_cache": kwargs.get("use_cache"),
1076
+ "position_ids": position_ids,
1077
+ "attention_mask": attention_mask,
1078
+ "token_type_ids": token_type_ids,
1079
+ "audio_info": audio_info
1080
+ }
1081
+ )
1082
+ return model_inputs
1083
+
1084
+ def forward(
1085
+ self,
1086
+ input_ids: Optional[torch.LongTensor] = None,
1087
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
1088
+ attention_mask: Optional[torch.FloatTensor] = None,
1089
+ token_type_ids: Optional[torch.LongTensor] = None,
1090
+ position_ids: Optional[torch.LongTensor] = None,
1091
+ head_mask: Optional[torch.FloatTensor] = None,
1092
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1093
+ encoder_hidden_states: Optional[torch.Tensor] = None,
1094
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
1095
+ labels: Optional[torch.LongTensor] = None,
1096
+ use_cache: Optional[bool] = None,
1097
+ output_attentions: Optional[bool] = None,
1098
+ output_hidden_states: Optional[bool] = None,
1099
+ return_dict: Optional[bool] = None,
1100
+ audio_info: Dict = None
1101
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1102
+
1103
+ return_dict = (
1104
+ return_dict if return_dict is not None else self.config.use_return_dict
1105
+ )
1106
+
1107
+ transformer_outputs = self.transformer(
1108
+ input_ids,
1109
+ past_key_values=past_key_values,
1110
+ attention_mask=attention_mask,
1111
+ token_type_ids=token_type_ids,
1112
+ position_ids=position_ids,
1113
+ head_mask=head_mask,
1114
+ inputs_embeds=inputs_embeds,
1115
+ encoder_hidden_states=encoder_hidden_states,
1116
+ encoder_attention_mask=encoder_attention_mask,
1117
+ use_cache=use_cache,
1118
+ output_attentions=output_attentions,
1119
+ output_hidden_states=output_hidden_states,
1120
+ return_dict=return_dict,
1121
+ audio_info=audio_info
1122
+ )
1123
+ hidden_states = transformer_outputs[0]
1124
+
1125
+ lm_logits = self.lm_head(hidden_states)
1126
+
1127
+ loss = None
1128
+ if labels is not None:
1129
+ labels = labels.to(lm_logits.device)
1130
+ shift_logits = lm_logits[..., :-1, :].contiguous()
1131
+ shift_labels = labels[..., 1:].contiguous()
1132
+ loss_fct = CrossEntropyLoss()
1133
+ loss = loss_fct(
1134
+ shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
1135
+ )
1136
+
1137
+ if not return_dict:
1138
+ output = (lm_logits,) + transformer_outputs[1:]
1139
+ return ((loss,) + output) if loss is not None else output
1140
+
1141
+ return CausalLMOutputWithPast(
1142
+ loss=loss,
1143
+ logits=lm_logits,
1144
+ past_key_values=transformer_outputs.past_key_values,
1145
+ hidden_states=transformer_outputs.hidden_states,
1146
+ attentions=transformer_outputs.attentions,
1147
+ )
1148
+
1149
+ @staticmethod
1150
+ def _reorder_cache(
1151
+ past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
1152
+ ) -> Tuple[Tuple[torch.Tensor]]:
1153
+
1154
+ return tuple(
1155
+ tuple(
1156
+ past_state.index_select(0, beam_idx.to(past_state.device))
1157
+ for past_state in layer_past
1158
+ )
1159
+ for layer_past in past_key_values
1160
+ )
1161
+
1162
+ def chat(
1163
+ self,
1164
+ tokenizer: PreTrainedTokenizer,
1165
+ query: str,
1166
+ history: Optional[HistoryType],
1167
+ system: str = "You are a helpful assistant.",
1168
+ append_history: bool = True,
1169
+ stream: Optional[bool] = _SENTINEL,
1170
+ stop_words_ids: Optional[List[List[int]]] = None,
1171
+ generation_config: Optional[GenerationConfig] = None,
1172
+ **kwargs,
1173
+ ) -> Tuple[str, HistoryType]:
1174
+ generation_config = generation_config if generation_config is not None else self.generation_config
1175
+
1176
+ assert stream is _SENTINEL, _ERROR_STREAM_IN_CHAT
1177
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1178
+ if history is None:
1179
+ history = []
1180
+ else:
1181
+ # make a copy of the user's input such that is is left untouched
1182
+ history = copy.deepcopy(history)
1183
+
1184
+ if stop_words_ids is None:
1185
+ stop_words_ids = []
1186
+
1187
+ max_window_size = kwargs.get('max_window_size', None)
1188
+ if max_window_size is None:
1189
+ max_window_size = generation_config.max_window_size
1190
+ raw_text, context_tokens, audio_info = make_context(
1191
+ tokenizer,
1192
+ query,
1193
+ history=history,
1194
+ system=system,
1195
+ max_window_size=max_window_size,
1196
+ chat_format=generation_config.chat_format,
1197
+ )
1198
+
1199
+ stop_words_ids.extend(get_stop_words_ids(
1200
+ generation_config.chat_format, tokenizer
1201
+ ))
1202
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1203
+ kwargs['audio_info'] = audio_info
1204
+ outputs = self.generate(
1205
+ input_ids,
1206
+ stop_words_ids=stop_words_ids,
1207
+ return_dict_in_generate=False,
1208
+ generation_config=generation_config,
1209
+ **kwargs,
1210
+ )
1211
+
1212
+ response = decode_tokens(
1213
+ outputs[0],
1214
+ tokenizer,
1215
+ raw_text_len=len(raw_text),
1216
+ context_length=len(context_tokens),
1217
+ chat_format=generation_config.chat_format,
1218
+ verbose=False,
1219
+ errors='replace',
1220
+ audio_info=audio_info
1221
+ )
1222
+
1223
+ # as history is a copy of the user inputs,
1224
+ # we can always return the new turn to the user.
1225
+ # separating input history and output history also enables the user
1226
+ # to implement more complex history management
1227
+ history.append((query, response))
1228
+
1229
+ return response, history
1230
+
1231
+ def chat_stream(
1232
+ self,
1233
+ tokenizer: PreTrainedTokenizer,
1234
+ query: str,
1235
+ history: Optional[HistoryType],
1236
+ system: str = "You are a helpful assistant.",
1237
+ stop_words_ids: Optional[List[List[int]]] = None,
1238
+ logits_processor: Optional[LogitsProcessorList] = None,
1239
+ generation_config: Optional[GenerationConfig] = None,
1240
+ **kwargs,
1241
+ ) -> Generator[str, Any, None]:
1242
+ generation_config = generation_config if generation_config is not None else self.generation_config
1243
+ assert generation_config.chat_format == 'chatml', _ERROR_BAD_CHAT_FORMAT
1244
+ if history is None:
1245
+ history = []
1246
+ if stop_words_ids is None:
1247
+ stop_words_ids = []
1248
+
1249
+ max_window_size = kwargs.get('max_window_size', None)
1250
+ if max_window_size is None:
1251
+ max_window_size = generation_config.max_window_size
1252
+ raw_text, context_tokens = make_context(
1253
+ tokenizer,
1254
+ query,
1255
+ history=history,
1256
+ system=system,
1257
+ max_window_size=max_window_size,
1258
+ chat_format=generation_config.chat_format,
1259
+ )
1260
+
1261
+ stop_words_ids.extend(get_stop_words_ids(
1262
+ generation_config.chat_format, tokenizer
1263
+ ))
1264
+ if stop_words_ids is not None:
1265
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1266
+ stop_words_ids=stop_words_ids,
1267
+ eos_token_id=generation_config.eos_token_id,
1268
+ )
1269
+ if logits_processor is None:
1270
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1271
+ else:
1272
+ logits_processor.append(stop_words_logits_processor)
1273
+ input_ids = torch.tensor([context_tokens]).to(self.device)
1274
+
1275
+ from transformers_stream_generator.main import NewGenerationMixin, StreamGenerationConfig
1276
+ self.__class__.generate_stream = NewGenerationMixin.generate
1277
+ self.__class__.sample_stream = NewGenerationMixin.sample_stream
1278
+ stream_config = StreamGenerationConfig(**generation_config.to_dict(), do_stream=True)
1279
+
1280
+ def stream_generator():
1281
+ outputs = []
1282
+ for token in self.generate_stream(
1283
+ input_ids,
1284
+ return_dict_in_generate=False,
1285
+ generation_config=stream_config,
1286
+ logits_processor=logits_processor,
1287
+ seed=-1,
1288
+ **kwargs):
1289
+ outputs.append(token.item())
1290
+ yield tokenizer.decode(outputs, skip_special_tokens=True, errors='ignore')
1291
+
1292
+ return stream_generator()
1293
+
1294
+ def generate(
1295
+ self,
1296
+ inputs: Optional[torch.Tensor] = None,
1297
+ generation_config: Optional[GenerationConfig] = None,
1298
+ logits_processor: Optional[LogitsProcessorList] = None,
1299
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1300
+ prefix_allowed_tokens_fn: Optional[
1301
+ Callable[[int, torch.Tensor], List[int]]
1302
+ ] = None,
1303
+ synced_gpus: Optional[bool] = None,
1304
+ assistant_model: Optional["PreTrainedModel"] = None,
1305
+ streamer: Optional["BaseStreamer"] = None,
1306
+ **kwargs,
1307
+ ) -> Union[GenerateOutput, torch.LongTensor]:
1308
+ generation_config = generation_config if generation_config is not None else self.generation_config
1309
+
1310
+ # Process stop_words_ids.
1311
+ stop_words_ids = kwargs.pop("stop_words_ids", None)
1312
+ if stop_words_ids is None and generation_config is not None:
1313
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1314
+ if stop_words_ids is None:
1315
+ stop_words_ids = getattr(generation_config, "stop_words_ids", None)
1316
+
1317
+ if stop_words_ids is not None:
1318
+ stop_words_logits_processor = StopWordsLogitsProcessor(
1319
+ stop_words_ids=stop_words_ids,
1320
+ eos_token_id=generation_config.eos_token_id,
1321
+ )
1322
+ if logits_processor is None:
1323
+ logits_processor = LogitsProcessorList([stop_words_logits_processor])
1324
+ else:
1325
+ logits_processor.append(stop_words_logits_processor)
1326
+
1327
+ return super().generate(
1328
+ inputs,
1329
+ generation_config=generation_config,
1330
+ logits_processor=logits_processor,
1331
+ stopping_criteria=stopping_criteria,
1332
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1333
+ synced_gpus=synced_gpus,
1334
+ assistant_model=assistant_model,
1335
+ streamer=streamer,
1336
+ **kwargs,
1337
+ )
1338
+
1339
+
1340
+ class RotaryEmbedding(torch.nn.Module):
1341
+ def __init__(self, dim, base=10000):
1342
+ super().__init__()
1343
+ self.dim = dim
1344
+ self.base = base
1345
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
1346
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
1347
+ if importlib.util.find_spec("einops") is None:
1348
+ raise RuntimeError("einops is required for Rotary Embedding")
1349
+
1350
+ self._rotary_pos_emb_cache = None
1351
+ self._seq_len_cached = 0
1352
+ self._ntk_alpha_cached = 1.0
1353
+ self._ntk_alpha_cached_list = [1.0]
1354
+
1355
+ def update_rotary_pos_emb_cache(self, max_seq_len, offset=0, ntk_alpha=1.0):
1356
+ seqlen = max_seq_len + offset
1357
+ if seqlen > self._seq_len_cached or ntk_alpha != self._ntk_alpha_cached:
1358
+ base = self.base * ntk_alpha ** (self.dim / (self.dim - 2))
1359
+ self.inv_freq = 1.0 / (
1360
+ base
1361
+ ** (
1362
+ torch.arange(0, self.dim, 2, device=self.inv_freq.device).float()
1363
+ / self.dim
1364
+ )
1365
+ )
1366
+ self._seq_len_cached = max(2 * seqlen, 16)
1367
+ self._ntk_alpha_cached = ntk_alpha
1368
+ seq = torch.arange(self._seq_len_cached, device=self.inv_freq.device)
1369
+ freqs = torch.outer(seq.type_as(self.inv_freq), self.inv_freq)
1370
+
1371
+ emb = torch.cat((freqs, freqs), dim=-1)
1372
+ from einops import rearrange
1373
+
1374
+ emb = rearrange(emb, "n d -> 1 n 1 d")
1375
+
1376
+ cos, sin = emb.cos(), emb.sin()
1377
+ self._rotary_pos_emb_cache = [cos, sin]
1378
+
1379
+ def forward(self, max_seq_len, offset=0, ntk_alpha=1.0):
1380
+ self.update_rotary_pos_emb_cache(max_seq_len, offset, ntk_alpha)
1381
+ cos, sin = self._rotary_pos_emb_cache
1382
+ return [cos[:, offset : offset + max_seq_len], sin[:, offset : offset + max_seq_len]]
1383
+
1384
+
1385
+ def _rotate_half(x):
1386
+ from einops import rearrange
1387
+
1388
+ x = rearrange(x, "... (j d) -> ... j d", j=2)
1389
+ x1, x2 = x.unbind(dim=-2)
1390
+ return torch.cat((-x2, x1), dim=-1)
1391
+
1392
+
1393
+ def apply_rotary_pos_emb(t, freqs):
1394
+ cos, sin = freqs
1395
+ if apply_rotary_emb_func is not None and t.is_cuda:
1396
+ t_ = t.float()
1397
+ cos = cos.squeeze(0).squeeze(1)[:, : cos.shape[-1] // 2]
1398
+ sin = sin.squeeze(0).squeeze(1)[:, : sin.shape[-1] // 2]
1399
+ output = apply_rotary_emb_func(t_, cos, sin).type_as(t)
1400
+ return output
1401
+ else:
1402
+ rot_dim = freqs[0].shape[-1]
1403
+ cos, sin = freqs
1404
+ t_, t_pass_ = t[..., :rot_dim], t[..., rot_dim:]
1405
+ t_ = t_.float()
1406
+ t_pass_ = t_pass_.float()
1407
+ t_ = (t_ * cos) + (_rotate_half(t_) * sin)
1408
+ return torch.cat((t_, t_pass_), dim=-1).type_as(t)
1409
+
1410
+
1411
+ class RMSNorm(torch.nn.Module):
1412
+ def __init__(self, dim: int, eps: float = 1e-6):
1413
+ super().__init__()
1414
+ self.eps = eps
1415
+ self.weight = nn.Parameter(torch.ones(dim))
1416
+
1417
+ def _norm(self, x):
1418
+ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
1419
+
1420
+ def forward(self, x):
1421
+ if rms_norm is not None and x.is_cuda:
1422
+ return rms_norm(x, self.weight, self.eps)
1423
+ else:
1424
+ output = self._norm(x.float()).type_as(x)
1425
+ return output * self.weight
qwen_generation_utils.py ADDED
@@ -0,0 +1,432 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Generation support."""
7
+
8
+ from typing import Tuple, List, Union, Iterable, Dict
9
+
10
+ import numpy as np
11
+ import torch
12
+ import torch.nn.functional as F
13
+ from transformers import PreTrainedTokenizer
14
+ from transformers import logging
15
+ from transformers.generation import LogitsProcessor
16
+
17
+ logger = logging.get_logger(__name__)
18
+
19
+ # Types.
20
+ HistoryType = List[Tuple[str, str]]
21
+ TokensType = List[int]
22
+ BatchTokensType = List[List[int]]
23
+
24
+
25
+ def pad_batch(batch: BatchTokensType, pad_id: int, seq_length: int) -> BatchTokensType:
26
+ for tokens in batch:
27
+ context_length = len(tokens)
28
+ if context_length < seq_length:
29
+ tokens.extend([pad_id] * (seq_length - context_length))
30
+ return batch
31
+
32
+
33
+ def get_ltor_masks_and_position_ids(
34
+ data,
35
+ eod_token,
36
+ reset_position_ids,
37
+ reset_attention_mask,
38
+ eod_mask_loss,
39
+ ):
40
+ """Build masks and position id for left to right model."""
41
+
42
+ # Extract batch size and sequence length.
43
+ micro_batch_size, seq_length = data.size()
44
+
45
+ # Attention mask (lower triangular).
46
+ if reset_attention_mask:
47
+ att_mask_batch = micro_batch_size
48
+ else:
49
+ att_mask_batch = 1
50
+ attention_mask = torch.tril(
51
+ torch.ones((att_mask_batch, seq_length, seq_length), device=data.device)
52
+ ).view(att_mask_batch, 1, seq_length, seq_length)
53
+
54
+ # Loss mask.
55
+ loss_mask = torch.ones(data.size(), dtype=torch.float, device=data.device)
56
+ if eod_mask_loss:
57
+ loss_mask[data == eod_token] = 0.0
58
+
59
+ # Position ids.
60
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=data.device)
61
+ position_ids = position_ids.unsqueeze(0).expand_as(data)
62
+ # We need to clone as the ids will be modifed based on batch index.
63
+ if reset_position_ids:
64
+ position_ids = position_ids.clone()
65
+
66
+ if reset_position_ids or reset_attention_mask:
67
+ # Loop through the batches:
68
+ for b in range(micro_batch_size):
69
+
70
+ # Find indecies where EOD token is.
71
+ eod_index = position_ids[b, data[b] == eod_token]
72
+ # Detach indecies from positions if going to modify positions.
73
+ if reset_position_ids:
74
+ eod_index = eod_index.clone()
75
+
76
+ # Loop through EOD indecies:
77
+ prev_index = 0
78
+ for j in range(eod_index.size()[0]):
79
+ i = eod_index[j]
80
+ # Mask attention loss.
81
+ if reset_attention_mask:
82
+ attention_mask[b, 0, (i + 1) :, : (i + 1)] = 0
83
+ # Reset positions.
84
+ if reset_position_ids:
85
+ position_ids[b, (i + 1) :] -= i + 1 - prev_index
86
+ prev_index = i + 1
87
+
88
+ # Convert attention mask to binary:
89
+ attention_mask = attention_mask < 0.5
90
+
91
+ return attention_mask, loss_mask, position_ids
92
+
93
+
94
+ def get_batch(context_tokens: torch.LongTensor, eod_id: int):
95
+ """Generate batch from context tokens."""
96
+ # Move to GPU.
97
+ tokens = context_tokens.contiguous().to(context_tokens.device)
98
+ # Get the attention mask and postition ids.
99
+ attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
100
+ tokens,
101
+ eod_id,
102
+ reset_position_ids=False,
103
+ reset_attention_mask=False,
104
+ eod_mask_loss=False,
105
+ )
106
+ return tokens, attention_mask, position_ids
107
+
108
+
109
+ def get_stop_words_ids(chat_format, tokenizer):
110
+ if chat_format == "raw":
111
+ stop_words_ids = [tokenizer.encode("Human:"), [tokenizer.eod_id]]
112
+ elif chat_format == "chatml":
113
+ stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
114
+ else:
115
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
116
+ return stop_words_ids
117
+
118
+
119
+ def make_context(
120
+ tokenizer: PreTrainedTokenizer,
121
+ query: str,
122
+ history: List[Tuple[str, str]] = None,
123
+ system: str = "",
124
+ max_window_size: int = 6144,
125
+ chat_format: str = "chatml",
126
+ ):
127
+ audio_info = None
128
+ if history is None:
129
+ history = []
130
+
131
+ if chat_format == "chatml":
132
+ im_start, im_end = "<|im_start|>", "<|im_end|>"
133
+ im_start_tokens = [tokenizer.im_start_id]
134
+ im_end_tokens = [tokenizer.im_end_id]
135
+ nl_tokens = tokenizer.encode("\n")
136
+
137
+ def _tokenize_str(role, content):
138
+ # import ipdb; ipdb.set_trace()
139
+ audio_info = tokenizer.process_audio(content)
140
+ return f"{role}\n{content}", tokenizer.encode(
141
+ role, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info
142
+ ) + nl_tokens + tokenizer.encode(content, allowed_special=set(tokenizer.AUDIO_ST), audio_info=audio_info),audio_info
143
+
144
+ system_text, system_tokens_part, audio_info = _tokenize_str("system", system)
145
+ system_tokens = im_start_tokens + system_tokens_part + im_end_tokens
146
+
147
+ raw_text = ""
148
+ context_tokens = []
149
+
150
+ for turn_query, turn_response in reversed(history):
151
+ query_text, query_tokens_part, _ = _tokenize_str("user", turn_query)
152
+ query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
153
+ if turn_response is not None:
154
+ response_text, response_tokens_part, _ = _tokenize_str(
155
+ "assistant", turn_response
156
+ )
157
+ response_tokens = im_start_tokens + response_tokens_part + im_end_tokens
158
+
159
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
160
+ prev_chat = (
161
+ f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
162
+ )
163
+ else:
164
+ next_context_tokens = nl_tokens + query_tokens + nl_tokens
165
+ prev_chat = f"\n{im_start}{query_text}{im_end}\n"
166
+
167
+ current_context_size = (
168
+ len(system_tokens) + len(next_context_tokens) + len(context_tokens)
169
+ )
170
+ if current_context_size < max_window_size:
171
+ context_tokens = next_context_tokens + context_tokens
172
+ raw_text = prev_chat + raw_text
173
+ else:
174
+ break
175
+
176
+ context_tokens = system_tokens + context_tokens
177
+ raw_text = f"{im_start}{system_text}{im_end}" + raw_text
178
+ context_tokens += (
179
+ nl_tokens
180
+ + im_start_tokens
181
+ + _tokenize_str("user", query)[1]
182
+ + im_end_tokens
183
+ + nl_tokens
184
+ + im_start_tokens
185
+ + tokenizer.encode("assistant")
186
+ + nl_tokens
187
+ )
188
+ raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"
189
+
190
+ audio_info = tokenizer.process_audio(raw_text)
191
+
192
+ elif chat_format == "raw":
193
+ raw_text = query
194
+ context_tokens = tokenizer.encode(raw_text)
195
+ else:
196
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
197
+
198
+ return raw_text, context_tokens, audio_info
199
+
200
+
201
+ def _decode_default(
202
+ tokens: List[int],
203
+ *,
204
+ stop_words: List[str],
205
+ eod_words: List[str],
206
+ tokenizer: PreTrainedTokenizer,
207
+ raw_text_len: int,
208
+ verbose: bool = False,
209
+ return_end_reason: bool = False,
210
+ errors: str='replace',
211
+ audio_info:Dict = None
212
+ ):
213
+ kwargs = {"audio_info": audio_info}
214
+ trim_decode_tokens = tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:]
215
+ if verbose:
216
+ print("\nRaw Generate: ", trim_decode_tokens)
217
+
218
+ end_reason = f"Gen length {len(tokens)}"
219
+ for stop_word in stop_words:
220
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
221
+ for eod_word in eod_words:
222
+ if eod_word in trim_decode_tokens:
223
+ end_reason = f"Gen {eod_word!r}"
224
+ trim_decode_tokens = trim_decode_tokens.split(eod_word)[0]
225
+ trim_decode_tokens = trim_decode_tokens.strip()
226
+ if verbose:
227
+ print("\nEnd Reason:", end_reason)
228
+ print("\nGenerate: ", trim_decode_tokens)
229
+
230
+ if return_end_reason:
231
+ return trim_decode_tokens, end_reason
232
+ else:
233
+ return trim_decode_tokens
234
+
235
+
236
+ def _decode_chatml(
237
+ tokens: List[int],
238
+ *,
239
+ stop_words: List[str],
240
+ eod_token_ids: List[int],
241
+ tokenizer: PreTrainedTokenizer,
242
+ raw_text_len: int,
243
+ context_length: int,
244
+ verbose: bool = False,
245
+ return_end_reason: bool = False,
246
+ errors: str='replace',
247
+ audio_info: Dict = None
248
+ ):
249
+ kwargs = {"audio_info": audio_info}
250
+ end_reason = f"Gen length {len(tokens)}"
251
+ eod_token_idx = context_length
252
+ for eod_token_idx in range(context_length, len(tokens)):
253
+ if tokens[eod_token_idx] in eod_token_ids:
254
+ end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]],**kwargs)!r}"
255
+ break
256
+
257
+ trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx], errors=errors, **kwargs)[raw_text_len:]
258
+ if verbose:
259
+ print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens, errors=errors, **kwargs)[raw_text_len:])
260
+ print("\nRaw Generate:", trim_decode_tokens)
261
+ print("\nEnd Reason:", end_reason)
262
+ for stop_word in stop_words:
263
+ trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
264
+ trim_decode_tokens = trim_decode_tokens.strip()
265
+ if verbose:
266
+ print("\nGenerate:", trim_decode_tokens)
267
+
268
+ if return_end_reason:
269
+ return trim_decode_tokens, end_reason
270
+ else:
271
+ return trim_decode_tokens
272
+
273
+
274
+ def decode_tokens(
275
+ tokens: Union[torch.LongTensor, TokensType],
276
+ tokenizer: PreTrainedTokenizer,
277
+ raw_text_len: int,
278
+ context_length: int,
279
+ chat_format: str,
280
+ verbose: bool = False,
281
+ return_end_reason: bool = False,
282
+ errors: str="replace",
283
+ audio_info: Dict = None
284
+ ) -> str:
285
+ if torch.is_tensor(tokens):
286
+ tokens = tokens.cpu().numpy().tolist()
287
+
288
+ if chat_format == "chatml":
289
+ return _decode_chatml(
290
+ tokens,
291
+ stop_words=[],
292
+ eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
293
+ tokenizer=tokenizer,
294
+ raw_text_len=raw_text_len,
295
+ context_length=context_length,
296
+ verbose=verbose,
297
+ return_end_reason=return_end_reason,
298
+ errors=errors,
299
+ audio_info=audio_info
300
+ )
301
+ elif chat_format == "raw":
302
+ return _decode_default(
303
+ tokens,
304
+ stop_words=["<|endoftext|>"],
305
+ eod_words=["<|endoftext|>"],
306
+ tokenizer=tokenizer,
307
+ raw_text_len=raw_text_len,
308
+ verbose=verbose,
309
+ return_end_reason=return_end_reason,
310
+ errors=errors,
311
+ audio_info=audio_info
312
+ )
313
+ else:
314
+ raise NotImplementedError(f"Unknown chat format {chat_format!r}")
315
+
316
+
317
+ class StopWordsLogitsProcessor(LogitsProcessor):
318
+ """
319
+ :class:`transformers.LogitsProcessor` that enforces that when specified sequences appear, stop geration.
320
+
321
+ Args:
322
+ stop_words_ids (:obj:`List[List[int]]`):
323
+ List of list of token ids of stop ids. In order to get the tokens of the words
324
+ that should not appear in the generated text, use :obj:`tokenizer(bad_word,
325
+ add_prefix_space=True).input_ids`.
326
+ eos_token_id (:obj:`int`):
327
+ The id of the `end-of-sequence` token.
328
+ """
329
+
330
+ def __init__(self, stop_words_ids: Iterable[Iterable[int]], eos_token_id: int):
331
+
332
+ if not isinstance(stop_words_ids, List) or len(stop_words_ids) == 0:
333
+ raise ValueError(
334
+ f"`stop_words_ids` has to be a non-emtpy list, but is {stop_words_ids}."
335
+ )
336
+ if any(not isinstance(bad_word_ids, list) for bad_word_ids in stop_words_ids):
337
+ raise ValueError(
338
+ f"`stop_words_ids` has to be a list of lists, but is {stop_words_ids}."
339
+ )
340
+ if any(
341
+ any(
342
+ (not isinstance(token_id, (int, np.integer)) or token_id < 0)
343
+ for token_id in stop_word_ids
344
+ )
345
+ for stop_word_ids in stop_words_ids
346
+ ):
347
+ raise ValueError(
348
+ f"Each list in `stop_words_ids` has to be a list of positive integers, but is {stop_words_ids}."
349
+ )
350
+
351
+ self.stop_words_ids = list(
352
+ filter(
353
+ lambda bad_token_seq: bad_token_seq != [eos_token_id], stop_words_ids
354
+ )
355
+ )
356
+ self.eos_token_id = eos_token_id
357
+ for stop_token_seq in self.stop_words_ids:
358
+ assert (
359
+ len(stop_token_seq) > 0
360
+ ), "Stop words token sequences {} cannot have an empty list".format(
361
+ stop_words_ids
362
+ )
363
+
364
+ def __call__(
365
+ self, input_ids: torch.LongTensor, scores: torch.FloatTensor
366
+ ) -> torch.FloatTensor:
367
+ stopped_samples = self._calc_stopped_samples(input_ids)
368
+ for i, should_stop in enumerate(stopped_samples):
369
+ if should_stop:
370
+ scores[i, self.eos_token_id] = float(2**15)
371
+ return scores
372
+
373
+ def _tokens_match(self, prev_tokens: torch.LongTensor, tokens: List[int]) -> bool:
374
+ if len(tokens) == 0:
375
+ # if bad word tokens is just one token always ban it
376
+ return True
377
+ elif len(tokens) > len(prev_tokens):
378
+ # if bad word tokens are longer then prev input_ids they can't be equal
379
+ return False
380
+ elif prev_tokens[-len(tokens) :].tolist() == tokens:
381
+ # if tokens match
382
+ return True
383
+ else:
384
+ return False
385
+
386
+ def _calc_stopped_samples(self, prev_input_ids: Iterable[int]) -> Iterable[int]:
387
+ stopped_samples = []
388
+ for prev_input_ids_slice in prev_input_ids:
389
+ match = False
390
+ for stop_token_seq in self.stop_words_ids:
391
+ if self._tokens_match(prev_input_ids_slice, stop_token_seq):
392
+ # if tokens do not match continue
393
+ match = True
394
+ break
395
+ stopped_samples.append(match)
396
+
397
+ return stopped_samples
398
+
399
+
400
+ def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float("Inf")):
401
+ """This function has been mostly taken from huggingface conversational
402
+ ai code at
403
+ https://medium.com/huggingface/how-to-build-a-state-of-the-art-
404
+ conversational-ai-with-transfer-learning-2d818ac26313"""
405
+
406
+ if top_k > 0:
407
+ # Remove all tokens with a probability less than the
408
+ # last token of the top-k
409
+ indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
410
+ logits[indices_to_remove] = filter_value
411
+
412
+ if top_p > 0.0:
413
+ # Cconvert to 1D
414
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
415
+ cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
416
+
417
+ # Remove tokens with cumulative probability above the threshold
418
+ sorted_indices_to_remove = cumulative_probs > top_p
419
+ # Shift the indices to the right to keep also the first token
420
+ # above the threshold
421
+ sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
422
+ sorted_indices_to_remove[..., 0] = 0
423
+ for i in range(sorted_indices.size(0)):
424
+ indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
425
+ logits[i][indices_to_remove] = filter_value
426
+
427
+ return logits
428
+
429
+
430
+ def switch(val1, val2, boolean):
431
+ boolean = boolean.type_as(val1)
432
+ return (1 - boolean) * val1 + boolean * val2
tokenization_qwen.py ADDED
@@ -0,0 +1,579 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Alibaba Cloud.
2
+ #
3
+ # This source code is licensed under the license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+
6
+ """Tokenization classes for QWen."""
7
+
8
+ import base64
9
+ import logging
10
+ import os
11
+ import re
12
+ import itertools
13
+
14
+ import requests
15
+ import unicodedata
16
+ from typing import Collection, Dict, List, Set, Tuple, Union, Any, Callable, Optional
17
+
18
+ import tiktoken
19
+ import numpy as np
20
+
21
+ from transformers import PreTrainedTokenizer, AddedToken
22
+ from transformers.utils import try_to_load_from_cache
23
+ from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, TruncationStrategy, \
24
+ TextInput, TextInputPair, PreTokenizedInput, PreTokenizedInputPair, TensorType, EncodedInput, EncodedInputPair
25
+
26
+ import matplotlib.colors as mcolors
27
+ from matplotlib.font_manager import FontProperties
28
+ from .audio import *
29
+
30
+ logger = logging.getLogger(__name__)
31
+
32
+ VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken", "ttf": "SimSun.ttf"}
33
+
34
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
35
+ ENDOFTEXT = "<|endoftext|>"
36
+ IMSTART = "<|im_start|>"
37
+ IMEND = "<|im_end|>"
38
+ # as the default behavior is changed to allow special tokens in
39
+ # regular texts, the surface forms of special tokens need to be
40
+ # as different as possible to minimize the impact
41
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
42
+ SPECIAL_TOKENS = (
43
+ ENDOFTEXT,
44
+ IMSTART,
45
+ IMEND,
46
+ ) + EXTRAS
47
+
48
+ LANGUAGES = {
49
+ "en": "english",
50
+ "zh": "chinese",
51
+ "de": "german",
52
+ "es": "spanish",
53
+ "ko": "korean",
54
+ "fr": "french",
55
+ "ja": "japanese",
56
+ "it": "italian",
57
+ }
58
+
59
+
60
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
61
+ with open(tiktoken_bpe_file, "rb") as f:
62
+ contents = f.read()
63
+ return {
64
+ base64.b64decode(token): int(rank)
65
+ for token, rank in (line.split() for line in contents.splitlines() if line)
66
+ }
67
+
68
+
69
+ def _list_find(
70
+ input_list: List[Any],
71
+ candidates: Tuple[Any],
72
+ start: int = 0,
73
+ ):
74
+ for i in range(start, len(input_list)):
75
+ if input_list[i] in candidates:
76
+ return i
77
+ return -1
78
+
79
+
80
+ def _replace_closed_tag(
81
+ input_tokens: List[Any],
82
+ start_tags: Union[Any, Tuple[Any]],
83
+ end_tags: Union[Any, Tuple[Any]],
84
+ inclusive_replace_func: Callable,
85
+ exclusive_replace_func: Callable = lambda x: x,
86
+ audio_info: Dict = None
87
+ ):
88
+ if isinstance(start_tags, (str, int)):
89
+ start_tags = (start_tags,)
90
+ if isinstance(end_tags, (str, int)):
91
+ end_tags = (end_tags,)
92
+ assert len(start_tags) == len(end_tags)
93
+
94
+ output_tokens = []
95
+ end = 0
96
+ audio_idx = 0
97
+ while True:
98
+ start = _list_find(input_tokens, start_tags, end)
99
+ if start == -1:
100
+ break
101
+ output_tokens.extend(exclusive_replace_func(input_tokens[end: start]))
102
+ tag_idx = start_tags.index(input_tokens[start])
103
+ end = _list_find(input_tokens, (end_tags[tag_idx],), start)
104
+ if end == -1:
105
+ raise ValueError("Unclosed audio token")
106
+ output_tokens.extend(inclusive_replace_func(input_tokens[start: end + 1], audio_info, audio_idx))
107
+ end += 1
108
+ audio_idx += 1
109
+ output_tokens.extend(exclusive_replace_func(input_tokens[end:]))
110
+ return output_tokens
111
+
112
+
113
+ class QWenTokenizer(PreTrainedTokenizer):
114
+ """QWen tokenizer."""
115
+
116
+ vocab_files_names = VOCAB_FILES_NAMES
117
+
118
+ def __init__(
119
+ self,
120
+ vocab_file,
121
+ errors="replace",
122
+ audio_start_tag='<audio>',
123
+ audio_end_tag='</audio>',
124
+ **kwargs,
125
+ ):
126
+ super().__init__(**kwargs)
127
+ self.audio_start_tag = audio_start_tag
128
+ self.audio_end_tag = audio_end_tag
129
+ self.audio_pad_tag = "[[[AUDIO:modality]]]"
130
+
131
+ self.AUDIO_ST = (
132
+ '[[[AUDIO:modality]]]',
133
+ # Transcription Tag
134
+ "<|startoftranscript|>", # Transcription
135
+ "<|startofanalysis|>", # Analysis
136
+ # Task Tag
137
+ "<|translate|>",
138
+ "<|transcribe|>",
139
+ "<|caption|>",
140
+ "<|keyword|>",
141
+ # Language Tag
142
+ "<|unknown|>", # unknown language
143
+ *[f"<|{lang}|>" for lang in LANGUAGES.keys()],
144
+ "<|zh_tr|>", # tranditional Chinese
145
+ # Timestamps Tag
146
+ "<|notimestamps|>",
147
+ "<|sil|>",
148
+ "<|timestamps|>",
149
+ *[f"<|{i * 0.01:.2f}|>" for i in range(3001)], # timestamps 0.00-30.00
150
+ # Output Instruction
151
+ "<|caption_audiocaps|>", # Audiocaps caption style
152
+ "<|caption_clotho|>", # Clotho caption style
153
+ "<|audioset_ontology|>", # Audioset ontology style
154
+ "<|caption_plain|>", # plain caption
155
+ "<|itn|>", # inversed text normalized
156
+ "<|wo_itn|>", # without inversed text normalized
157
+ "<|startofentityvalue|>",
158
+ "<|endofentityvalue|>",
159
+ "<|startofentitytype|>",
160
+ "<|endofentitytype|>",
161
+ "<|named_entity_recognition|>", # named entity recognition task
162
+ "<|audio_grounding|>",
163
+ "<|startofword|>",
164
+ "<|endofword|>",
165
+ "<|delim|>", # delimiter of timestamps pair in audio grounding
166
+ "<|emotion_recognition|>", # emotion recognition
167
+ "<|music_description|>", # music description
168
+ "<|note_analysis|>", # note analysis
169
+ "<|pitch|>", # note analysis: pitch
170
+ *[f"<|midi_pitch_{i}|>" for i in range(128)], # midi pitch 0-127
171
+ "<|velocity|>", # note analysis: velocity
172
+ *[f"<|midi_velocity_{i}|>" for i in range(128)], # midi velocity 0-127
173
+ "<|sonic|>", # note analysis: sonic
174
+ "<|instrument|>", # note analysis: instrument
175
+ "<|speaker_meta|>", # meta information of speaker
176
+ "<|song_meta|>", # meta information of song
177
+ "<|question|>", # AQA: question
178
+ "<|answer|>", # AQA: answer
179
+ "<|choice|>", # AQA: answer choice
180
+ "<|scene|>", # scene recognition
181
+ "<|event|>", # sound event
182
+ "<|vocal_classification|>", # vocal classification
183
+ "<|speech_understanding|>", # speech language understanding
184
+ "<|scenario|>", # speech language understanding: scenario
185
+ "<|action|>", # speech language understanding: action
186
+ "<|entities|>", # speech language understanding: entities
187
+ "<|speech_edit|>", # speech edit
188
+ audio_start_tag,
189
+ audio_end_tag
190
+ )
191
+
192
+ self.errors = errors # how to handle errors in decoding
193
+
194
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: dict[bytes, int]
195
+ self.special_tokens = {
196
+ token: index
197
+ for index, token in enumerate(
198
+ SPECIAL_TOKENS + self.AUDIO_ST, start=len(self.mergeable_ranks)
199
+
200
+ )
201
+ }
202
+ self.audio_start_id = self.special_tokens[self.audio_start_tag]
203
+ self.audio_end_id = self.special_tokens[self.audio_end_tag]
204
+ self.audio_pad_id = self.special_tokens[self.audio_pad_tag]
205
+ print(f"audio_start_id: {self.audio_start_id}, "
206
+ f"audio_end_id: {self.audio_end_id}, "
207
+ f"audio_pad_id: {self.audio_pad_id}.")
208
+
209
+ enc = tiktoken.Encoding(
210
+ "Qwen",
211
+ pat_str=PAT_STR,
212
+ mergeable_ranks=self.mergeable_ranks,
213
+ special_tokens=self.special_tokens,
214
+ )
215
+ assert (
216
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
217
+ ), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
218
+
219
+ self.decoder = {
220
+ v: k for k, v in self.mergeable_ranks.items()
221
+ } # type: dict[int, bytes|str]
222
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
223
+
224
+ self.tokenizer = enc # type: tiktoken.Encoding
225
+
226
+ self.eod_id = self.tokenizer.eot_token
227
+ self.im_start_id = self.special_tokens[IMSTART]
228
+ self.im_end_id = self.special_tokens[IMEND]
229
+
230
+ def __getstate__(self):
231
+ # for pickle lovers
232
+ state = self.__dict__.copy()
233
+ del state['tokenizer']
234
+ return state
235
+
236
+ def __setstate__(self, state):
237
+ # tokenizer is not python native; don't pass it; rebuild it
238
+ self.__dict__.update(state)
239
+ enc = tiktoken.Encoding(
240
+ "Qwen",
241
+ pat_str=PAT_STR,
242
+ mergeable_ranks=self.mergeable_ranks,
243
+ special_tokens=self.special_tokens,
244
+ )
245
+ self.tokenizer = enc
246
+
247
+ def __len__(self) -> int:
248
+ return self.tokenizer.n_vocab
249
+
250
+ def get_vocab(self) -> Dict[bytes, int]:
251
+ return self.mergeable_ranks
252
+
253
+ def convert_tokens_to_ids(
254
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
255
+ ) -> List[int]:
256
+ ids = []
257
+ if isinstance(tokens, (str, bytes)):
258
+ if tokens in self.special_tokens:
259
+ return self.special_tokens[tokens]
260
+ else:
261
+ return self.mergeable_ranks.get(tokens)
262
+ for token in tokens:
263
+ if token in self.special_tokens:
264
+ ids.append(self.special_tokens[token])
265
+ else:
266
+ ids.append(self.mergeable_ranks.get(token))
267
+ return ids
268
+
269
+ def _add_tokens(self, new_tokens: Union[List[str], List[AddedToken]], special_tokens: bool = False) -> int:
270
+ if not special_tokens and new_tokens:
271
+ raise ValueError('Adding regular tokens is not supported')
272
+ for token in new_tokens:
273
+ surface_form = token.content if isinstance(token, AddedToken) else token
274
+ if surface_form not in SPECIAL_TOKENS + self.AUDIO_ST:
275
+ raise ValueError('Adding unknown special tokens is not supported')
276
+ return 0
277
+
278
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
279
+ """
280
+ Save only the vocabulary of the tokenizer (vocabulary).
281
+
282
+ Returns:
283
+ `Tuple(str)`: Paths to the files saved.
284
+ """
285
+ file_path = os.path.join(save_directory, "qwen.tiktoken")
286
+ with open(file_path, "w", encoding="utf8") as w:
287
+ for k, v in self.mergeable_ranks.items():
288
+ line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
289
+ w.write(line)
290
+ return (file_path,)
291
+
292
+ def tokenize(
293
+ self,
294
+ text: str,
295
+ allowed_special: Union[Set, str] = "all",
296
+ disallowed_special: Union[Collection, str] = (),
297
+ audio_info: Dict = None,
298
+ **kwargs,
299
+ ) -> List[Union[bytes, str]]:
300
+ """
301
+ Converts a string in a sequence of tokens.
302
+
303
+ Args:
304
+ text (`str`):
305
+ The sequence to be encoded.
306
+ allowed_special (`Literal["all"]` or `set`):
307
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
308
+ Default to "all".
309
+ disallowed_special (`Literal["all"]` or `Collection`):
310
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
311
+ Default to an empty tuple.
312
+
313
+ kwargs (additional keyword arguments, *optional*):
314
+ Will be passed to the underlying model specific encode method.
315
+
316
+ Returns:
317
+ `List[bytes|str]`: The list of tokens.
318
+ """
319
+ tokens = []
320
+ text = unicodedata.normalize("NFC", text)
321
+
322
+ # this implementation takes a detour: text -> token id -> token surface forms
323
+ for t in self.tokenizer.encode(
324
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
325
+ ):
326
+ tokens.append(self.decoder[t])
327
+
328
+ def _encode_audiourl(audio_tokens, audio_info, audio_idx):
329
+ assert audio_tokens[0] == self.audio_start_tag and audio_tokens[-1] == self.audio_end_tag
330
+ audio_token_span = audio_info['audio_span_tokens'][audio_idx]
331
+ out_audio_tokens = [self.audio_start_tag] + [self.audio_pad_tag] * (audio_token_span - 2) + [
332
+ self.audio_end_tag]
333
+ return out_audio_tokens
334
+
335
+ return _replace_closed_tag(tokens, self.audio_start_tag, self.audio_end_tag, _encode_audiourl,
336
+ audio_info=audio_info)
337
+
338
+ def _batch_encode_plus(
339
+ self,
340
+ batch_text_or_text_pairs: Union[
341
+ List[TextInput],
342
+ List[TextInputPair],
343
+ List[PreTokenizedInput],
344
+ List[PreTokenizedInputPair],
345
+ List[EncodedInput],
346
+ List[EncodedInputPair],
347
+ ],
348
+ add_special_tokens: bool = True,
349
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
350
+ truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
351
+ max_length: Optional[int] = None,
352
+ stride: int = 0,
353
+ is_split_into_words: bool = False,
354
+ pad_to_multiple_of: Optional[int] = None,
355
+ return_tensors: Optional[Union[str, TensorType]] = None,
356
+ return_token_type_ids: Optional[bool] = None,
357
+ return_attention_mask: Optional[bool] = None,
358
+ return_overflowing_tokens: bool = False,
359
+ return_special_tokens_mask: bool = False,
360
+ return_offsets_mapping: bool = False,
361
+ return_length: bool = False,
362
+ verbose: bool = True,
363
+ **kwargs,
364
+ ) -> BatchEncoding:
365
+
366
+ def get_input_ids(text):
367
+ if isinstance(text, str):
368
+ tokens = self.tokenize(text, **kwargs)
369
+ return self.convert_tokens_to_ids(tokens)
370
+ elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], str):
371
+ if is_split_into_words:
372
+ tokens = list(
373
+ itertools.chain(*(self.tokenize(t, is_split_into_words=True, **kwargs) for t in text))
374
+ )
375
+ return self.convert_tokens_to_ids(tokens)
376
+ else:
377
+ return self.convert_tokens_to_ids(text)
378
+ elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int):
379
+ return text
380
+ else:
381
+ raise ValueError(
382
+ "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers."
383
+ )
384
+
385
+ if return_offsets_mapping:
386
+ raise NotImplementedError(
387
+ "return_offset_mapping is not available when using Python tokenizers. "
388
+ "To use this feature, change your tokenizer to one deriving from "
389
+ "transformers.PreTrainedTokenizerFast."
390
+ )
391
+
392
+ input_ids = []
393
+ audio_info = kwargs.pop("audio_info", None)
394
+ for pair_id in range(len(batch_text_or_text_pairs)):
395
+ kwargs['audio_info'] = audio_info[pair_id]
396
+ ids_or_pair_ids = batch_text_or_text_pairs[pair_id]
397
+ # for ids_or_pair_ids in batch_text_or_text_pairs:
398
+ if not isinstance(ids_or_pair_ids, (list, tuple)):
399
+ ids, pair_ids = ids_or_pair_ids, None
400
+ elif is_split_into_words and not isinstance(ids_or_pair_ids[0], (list, tuple)):
401
+ ids, pair_ids = ids_or_pair_ids, None
402
+ else:
403
+ ids, pair_ids = ids_or_pair_ids
404
+
405
+ first_ids = get_input_ids(ids)
406
+ second_ids = get_input_ids(pair_ids) if pair_ids is not None else None
407
+ input_ids.append((first_ids, second_ids))
408
+
409
+ batch_outputs = self._batch_prepare_for_model(
410
+ input_ids,
411
+ add_special_tokens=add_special_tokens,
412
+ padding_strategy=padding_strategy,
413
+ truncation_strategy=truncation_strategy,
414
+ max_length=max_length,
415
+ stride=stride,
416
+ pad_to_multiple_of=pad_to_multiple_of,
417
+ return_attention_mask=return_attention_mask,
418
+ return_token_type_ids=return_token_type_ids,
419
+ return_overflowing_tokens=return_overflowing_tokens,
420
+ return_special_tokens_mask=return_special_tokens_mask,
421
+ return_length=return_length,
422
+ return_tensors=return_tensors,
423
+ verbose=verbose,
424
+ )
425
+
426
+ return BatchEncoding(batch_outputs)
427
+
428
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
429
+ """
430
+ Converts a sequence of tokens in a single string.
431
+ """
432
+ text = ""
433
+ temp = b""
434
+ for t in tokens:
435
+ if isinstance(t, str):
436
+ if temp:
437
+ text += temp.decode("utf-8", errors=self.errors)
438
+ temp = b""
439
+ text += t
440
+ elif isinstance(t, bytes):
441
+ temp += t
442
+ else:
443
+ raise TypeError("token should only be of type types or str")
444
+ if temp:
445
+ text += temp.decode("utf-8", errors=self.errors)
446
+ return text
447
+
448
+ @property
449
+ def vocab_size(self):
450
+ return self.tokenizer.n_vocab
451
+
452
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
453
+ """Converts an id to a token, special tokens included"""
454
+ if index in self.decoder:
455
+ return self.decoder[index]
456
+ raise ValueError("unknown ids")
457
+
458
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
459
+ """Converts a token to an id using the vocab, special tokens included"""
460
+ if token in self.special_tokens:
461
+ return self.special_tokens[token]
462
+ if token in self.mergeable_ranks:
463
+ return self.mergeable_ranks[token]
464
+ raise ValueError("unknown token")
465
+
466
+ def _tokenize(self, text: str, **kwargs):
467
+ """
468
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
469
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
470
+
471
+ Do NOT take care of added tokens.
472
+ """
473
+ raise NotImplementedError
474
+
475
+ def _decode(
476
+ self,
477
+ token_ids: Union[int, List[int]],
478
+ skip_special_tokens: bool = False,
479
+ errors: str = None,
480
+ **kwargs,
481
+ ) -> str:
482
+ if isinstance(token_ids, int):
483
+ token_ids = [token_ids]
484
+ audio_info = kwargs.pop("audio_info", None)
485
+
486
+ def _decode_audiourl(audio_token_ids, audio_info, audio_idx):
487
+ assert audio_token_ids[0] == self.audio_start_id and audio_token_ids[-1] == self.audio_end_id
488
+ audio_url = audio_info["audio_urls"][audio_idx]
489
+ return [self.audio_start_id] + self.tokenizer.encode(audio_url) + [self.audio_end_id]
490
+
491
+ token_ids = _replace_closed_tag(token_ids, self.audio_start_id, self.audio_end_id, _decode_audiourl,
492
+ audio_info=audio_info)
493
+
494
+ if skip_special_tokens:
495
+ token_ids = [i for i in token_ids if i < self.eod_id]
496
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
497
+
498
+ def to_list_format(self, text: str):
499
+ text = unicodedata.normalize("NFC", text)
500
+ token_ids = self.tokenizer.encode(
501
+ text, allowed_special=set(self.AUDIO_ST + (ENDOFTEXT,)))
502
+
503
+ def _encode_audio_info(tokens):
504
+ if len(tokens) == 0:
505
+ return []
506
+ if tokens[0] == self.audio_start_id and tokens[-1] == self.audio_end_id:
507
+ key = 'audio'
508
+ else:
509
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
510
+ return [{'text': b''.join(map(_tobytes, map(self.decoder.get, tokens))).decode('utf-8')}]
511
+ _tobytes = lambda x: x.encode('utf-8') if isinstance(x, str) else x
512
+ val = b''.join(map(_tobytes, map(self.decoder.get, tokens[1:-1]))).decode('utf-8')
513
+ return [{key: val}]
514
+
515
+ return _replace_closed_tag(
516
+ token_ids,
517
+ (self.audio_start_id),
518
+ (self.audio_end_id),
519
+ _encode_audio_info,
520
+ _encode_audio_info,
521
+ )
522
+
523
+ def from_list_format(self, list_format: List[Dict]):
524
+ text = ''
525
+ num_audios = 0
526
+ for ele in list_format:
527
+ if 'audio' in ele:
528
+ num_audios += 1
529
+ text += f'Audio {num_audios}:'
530
+ text += self.audio_start_tag + ele['audio'] + self.audio_end_tag
531
+ text += '\n'
532
+ elif 'text' in ele:
533
+ text += ele['text']
534
+ elif 'box' in ele:
535
+ if 'ref' in ele:
536
+ text += self.ref_start_tag + ele['ref'] + self.ref_end_tag
537
+ for box in ele['box']:
538
+ text += self.box_start_tag + '(%d,%d),(%d,%d)' % (box[0], box[1], box[2], box[3]) + self.box_end_tag
539
+ else:
540
+ raise ValueError("Unsupport element: " + str(ele))
541
+ return text
542
+
543
+ def extract_audio_urls(self, text):
544
+ pattern = rf"{self.audio_start_tag}(.*?){self.audio_end_tag}"
545
+ return re.findall(pattern, text)
546
+
547
+ def process_audio(self, text):
548
+ audio_urls = self.extract_audio_urls(text)
549
+ if len(audio_urls) > 0:
550
+ audios, audio_lens, audio_span_tokens = [], [], []
551
+ for audio_path in audio_urls:
552
+ if audio_path.startswith("http://") or audio_path.startswith("https://"): # http
553
+ data = bytes(requests.get(audio_path, stream=True).content)
554
+ audio = load_bytesio_audio(data)
555
+ else:
556
+ audio = load_audio(audio_path)
557
+ L = (audio.shape[0] if audio.shape[0] <= 480000 else 480000) # max_length < 30s
558
+ mel_len = L // 160
559
+ audio = pad_or_trim(audio.flatten())
560
+ mel = log_mel_spectrogram(audio)
561
+ audio_len_after_cnn = get_T_after_cnn(mel_len)
562
+ audio_token_num = (audio_len_after_cnn - 2) // 2 + 1
563
+ audio_len = [audio_len_after_cnn, audio_token_num]
564
+ audios.append(mel)
565
+ audio_lens.append(audio_len)
566
+ audio_span_tokens.append(audio_token_num + 2) # add audio bos eos
567
+ input_audio_lengths = torch.IntTensor(audio_lens)
568
+ input_audios = torch.stack(audios, dim=0)
569
+ return {"input_audios": input_audios,
570
+ "input_audio_lengths": input_audio_lengths,
571
+ "audio_span_tokens": audio_span_tokens,
572
+ "audio_urls": audio_urls}
573
+ else:
574
+ return None
575
+
576
+
577
+
578
+
579
+