--- tags: - merge - mergekit - lazymergekit - SuperAGI/SAM - GoogleAI/Gemini - bigscience/bloom - openai/opt-175b - deepmind/gopher - microsoft/megatron-turing-nlg base_model: - SuperAGI/SAM - GoogleAI/Gemini - bigscience/bloom - openai/opt-175b - deepmind/gopher - microsoft/megatron-turing-nlg --- # SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [SuperAGI/SAM](https://huggingface.co/SuperAGI/SAM) * [GoogleAI/Gemini](https://huggingface.co/GoogleAI/Gemini) * [bigscience/bloom](https://huggingface.co/bigscience/bloom) * [openai/opt-175b](https://huggingface.co/openai/opt-175b) * [deepmind/gopher](https://huggingface.co/deepmind/gopher) * [microsoft/megatron-turing-nlg](https://huggingface.co/microsoft/megatron-turing-nlg) ## 🧩 Configuration ```yaml slices: - sources: - model: SuperAGI/SAM layer_range: [0, 32] - model: GoogleAI/Gemini layer_range: [0, 32] - model: bigscience/bloom layer_range: [0, 32] - model: openai/opt-175b layer_range: [0, 32] - model: deepmind/gopher layer_range: [0, 32] - model: microsoft/megatron-turing-nlg layer_range: [0, 32] merge_method: slerp base_model: SuperAGI/SAM parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat1 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Or4cl3-1/SAM-Gemini-BLOOM-OPT-Gopher-Megatron-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```