File size: 3,613 Bytes
0b3827b
 
fccd50f
 
 
0b3827b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
780a4eb
 
0b3827b
e3f651a
 
0b3827b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395b69a
0b3827b
 
 
 
 
 
 
 
e3f651a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8dd17a
e3f651a
 
 
 
0b3827b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
---
license: bigcode-openrail-m
base_model:
  - bigcode/starcoder2-15b
base_model_ralation: quantized
---

# starcoder2-15b-int4-ov

 * Model creator: [BigCode](https://huggingface.co/bigcode)
 * Original model: [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b)

## Description

This is [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).

## Quantization Parameters

Weight compression was performed using `nncf.compress_weights` with the following parameters:


* mode: **INT4_SYM**
* group_size: **128**
* ratio: **1.0**

For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).

## Compatibility

The provided OpenVINO™ IR model is compatible with:

* OpenVINO version 2024.2.0 and higher
* Optimum Intel 1.17.0 and higher

## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)


1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:

```
pip install optimum[openvino]
```

2. Run model inference:

```
from transformers import AutoTokenizer
from optimum.intel.openvino import OVModelForCausalLM

model_id = "OpenVINO/starcoder2-15b-int4-ov"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = OVModelForCausalLM.from_pretrained(model_id)

inputs = tokenizer("def print_hello_world():", return_tensors="pt")

outputs = model.generate(**inputs, max_length=200)
text = tokenizer.batch_decode(outputs)[0]
print(text)
```

For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).

## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)

1. Install packages required for using OpenVINO GenAI.
```
pip install openvino-genai huggingface_hub
```

2. Download model from HuggingFace Hub
   
```
import huggingface_hub as hf_hub

model_id = "OpenVINO/starcoder2-15b-int4-ov"
model_path = "starcoder2-15b-int4-ov"

hf_hub.snapshot_download(model_id, local_dir=model_path)

```

3. Run model inference:

```
import openvino_genai as ov_genai

device = "CPU"
pipe = ov_genai.LLMPipeline(model_path, device)
print(pipe.generate("def print_hello_world():", max_length=200))
```

More GenAI usage examples can be found in OpenVINO GenAI library [docs](https://github.com/openvinotoolkit/openvino.genai/blob/master/src/README.md) and [samples](https://github.com/openvinotoolkit/openvino.genai?tab=readme-ov-file#openvino-genai-samples)

## Legal information

The original model is distributed under [bigcode-openrail-m](https://www.bigcode-project.org/docs/pages/bigcode-openrail/) license. More details can be found in [bigcode/starcoder2-15b](https://huggingface.co/bigcode/starcoder2-15b).

## Disclaimer

Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.