openvino-ci commited on
Commit
e2976a9
1 Parent(s): 07c768a

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://choosealicense.com/licenses/mit/
4
+ base_model: microsoft/Phi-3.5-mini-instruct
5
+
6
+ ---
7
+ # Phi-3.5-mini-instruct-fp6-ov
8
+ * Model creator: [microsoft](https://huggingface.co/microsoft)
9
+ * Original model: [Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct)
10
+
11
+ ## Description
12
+
13
+ ## Compatibility
14
+
15
+ The provided OpenVINO™ IR model is compatible with:
16
+
17
+ * OpenVINO version 2024.5.0 and higher
18
+ * Optimum Intel 1.21.0 and higher
19
+
20
+ ## Running Model Inference
21
+
22
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
23
+
24
+ ```
25
+ pip install optimum[openvino]
26
+ ```
27
+
28
+ 2. Run model inference:
29
+
30
+ ```
31
+ from transformers import AutoTokenizer
32
+ from optimum.intel.openvino import OVModelForCausalLM
33
+
34
+ model_id = "OpenVINO/Phi-3.5-mini-instruct-fp6-ov"
35
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
36
+ model = OVModelForCausalLM.from_pretrained(model_id)
37
+
38
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
39
+
40
+ outputs = model.generate(**inputs, max_length=200)
41
+ text = tokenizer.batch_decode(outputs)[0]
42
+ print(text)
43
+ ```
44
+
45
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
46
+
47
+ ## Limitations
48
+
49
+ Check the original model card for [original model card](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) for limitations.
50
+
51
+ ## Legal information
52
+
53
+ The original model is distributed under [mit](https://choosealicense.com/licenses/mit/) license. More details can be found in [original model card](https://huggingface.co/microsoft/Phi-3.5-mini-instruct).
54
+
55
+ ## Disclaimer
56
+
57
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
config.json ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_attn_implementation_autoset": true,
3
+ "_name_or_path": "microsoft/Phi-3.5-mini-instruct",
4
+ "architectures": [
5
+ "Phi3ForCausalLM"
6
+ ],
7
+ "attention_bias": false,
8
+ "attention_dropout": 0.0,
9
+ "auto_map": {
10
+ "AutoConfig": "configuration_phi3.Phi3Config",
11
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
12
+ },
13
+ "bos_token_id": 1,
14
+ "embd_pdrop": 0.0,
15
+ "eos_token_id": 32000,
16
+ "hidden_act": "silu",
17
+ "hidden_size": 3072,
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 8192,
20
+ "max_position_embeddings": 131072,
21
+ "model_type": "phi3",
22
+ "num_attention_heads": 32,
23
+ "num_hidden_layers": 32,
24
+ "num_key_value_heads": 32,
25
+ "original_max_position_embeddings": 4096,
26
+ "pad_token_id": 32000,
27
+ "resid_pdrop": 0.0,
28
+ "rms_norm_eps": 1e-05,
29
+ "rope_scaling": {
30
+ "long_factor": [
31
+ 1.0800000429153442,
32
+ 1.1100000143051147,
33
+ 1.1399999856948853,
34
+ 1.340000033378601,
35
+ 1.5899999141693115,
36
+ 1.600000023841858,
37
+ 1.6200000047683716,
38
+ 2.620000123977661,
39
+ 3.2300000190734863,
40
+ 3.2300000190734863,
41
+ 4.789999961853027,
42
+ 7.400000095367432,
43
+ 7.700000286102295,
44
+ 9.09000015258789,
45
+ 12.199999809265137,
46
+ 17.670000076293945,
47
+ 24.46000099182129,
48
+ 28.57000160217285,
49
+ 30.420001983642578,
50
+ 30.840002059936523,
51
+ 32.590003967285156,
52
+ 32.93000411987305,
53
+ 42.320003509521484,
54
+ 44.96000289916992,
55
+ 50.340003967285156,
56
+ 50.45000457763672,
57
+ 57.55000305175781,
58
+ 57.93000411987305,
59
+ 58.21000289916992,
60
+ 60.1400032043457,
61
+ 62.61000442504883,
62
+ 62.62000274658203,
63
+ 62.71000289916992,
64
+ 63.1400032043457,
65
+ 63.1400032043457,
66
+ 63.77000427246094,
67
+ 63.93000411987305,
68
+ 63.96000289916992,
69
+ 63.970001220703125,
70
+ 64.02999877929688,
71
+ 64.06999969482422,
72
+ 64.08000183105469,
73
+ 64.12000274658203,
74
+ 64.41000366210938,
75
+ 64.4800033569336,
76
+ 64.51000213623047,
77
+ 64.52999877929688,
78
+ 64.83999633789062
79
+ ],
80
+ "short_factor": [
81
+ 1.0,
82
+ 1.0199999809265137,
83
+ 1.0299999713897705,
84
+ 1.0299999713897705,
85
+ 1.0499999523162842,
86
+ 1.0499999523162842,
87
+ 1.0499999523162842,
88
+ 1.0499999523162842,
89
+ 1.0499999523162842,
90
+ 1.0699999332427979,
91
+ 1.0999999046325684,
92
+ 1.1099998950958252,
93
+ 1.1599998474121094,
94
+ 1.1599998474121094,
95
+ 1.1699998378753662,
96
+ 1.2899998426437378,
97
+ 1.339999794960022,
98
+ 1.679999828338623,
99
+ 1.7899998426437378,
100
+ 1.8199998140335083,
101
+ 1.8499997854232788,
102
+ 1.8799997568130493,
103
+ 1.9099997282028198,
104
+ 1.9399996995925903,
105
+ 1.9899996519088745,
106
+ 2.0199997425079346,
107
+ 2.0199997425079346,
108
+ 2.0199997425079346,
109
+ 2.0199997425079346,
110
+ 2.0199997425079346,
111
+ 2.0199997425079346,
112
+ 2.0299997329711914,
113
+ 2.0299997329711914,
114
+ 2.0299997329711914,
115
+ 2.0299997329711914,
116
+ 2.0299997329711914,
117
+ 2.0299997329711914,
118
+ 2.0299997329711914,
119
+ 2.0299997329711914,
120
+ 2.0299997329711914,
121
+ 2.0799996852874756,
122
+ 2.0899996757507324,
123
+ 2.189999580383301,
124
+ 2.2199995517730713,
125
+ 2.5899994373321533,
126
+ 2.729999542236328,
127
+ 2.749999523162842,
128
+ 2.8399994373321533
129
+ ],
130
+ "type": "longrope"
131
+ },
132
+ "rope_theta": 10000.0,
133
+ "sliding_window": 262144,
134
+ "tie_word_embeddings": false,
135
+ "torch_dtype": "float16",
136
+ "transformers_version": "4.46.3",
137
+ "use_cache": true,
138
+ "vocab_size": 32064
139
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3 model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3Config(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3Model`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be `longrope` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import Phi3Model, Phi3Config
103
+
104
+ >>> # Initializing a Phi-3 style configuration
105
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = Phi3Model(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32064,
120
+ hidden_size=3072,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="silu",
129
+ max_position_embeddings=4096,
130
+ original_max_position_embeddings=4096,
131
+ initializer_range=0.02,
132
+ rms_norm_eps=1e-5,
133
+ use_cache=True,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ bos_token_id=1,
138
+ eos_token_id=32000,
139
+ pad_token_id=32000,
140
+ sliding_window=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.resid_pdrop = resid_pdrop
154
+ self.embd_pdrop = embd_pdrop
155
+ self.attention_dropout = attention_dropout
156
+ self.hidden_act = hidden_act
157
+ self.max_position_embeddings = max_position_embeddings
158
+ self.original_max_position_embeddings = original_max_position_embeddings
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.use_cache = use_cache
162
+ self.rope_theta = rope_theta
163
+ self.rope_scaling = rope_scaling
164
+ self._rope_scaling_adjustment()
165
+ self._rope_scaling_validation()
166
+ self.sliding_window = sliding_window
167
+
168
+ super().__init__(
169
+ bos_token_id=bos_token_id,
170
+ eos_token_id=eos_token_id,
171
+ pad_token_id=pad_token_id,
172
+ tie_word_embeddings=tie_word_embeddings,
173
+ **kwargs,
174
+ )
175
+
176
+ def _rope_scaling_adjustment(self):
177
+ """
178
+ Adjust the `type` of the `rope_scaling` configuration for backward compatibility.
179
+ """
180
+ if self.rope_scaling is None:
181
+ return
182
+
183
+ rope_scaling_type = self.rope_scaling.get("type", None)
184
+
185
+ # For backward compatibility if previous version used "su" or "yarn"
186
+ if rope_scaling_type is not None and rope_scaling_type in ["su", "yarn"]:
187
+ self.rope_scaling["type"] = "longrope"
188
+
189
+ def _rope_scaling_validation(self):
190
+ """
191
+ Validate the `rope_scaling` configuration.
192
+ """
193
+ if self.rope_scaling is None:
194
+ return
195
+
196
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
197
+ raise ValueError(
198
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
199
+ f"got {self.rope_scaling}"
200
+ )
201
+ rope_scaling_type = self.rope_scaling.get("type", None)
202
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
203
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
204
+ if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
205
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
206
+ if not (
207
+ isinstance(rope_scaling_short_factor, list)
208
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
209
+ ):
210
+ raise ValueError(
211
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
212
+ )
213
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
214
+ raise ValueError(
215
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
216
+ )
217
+ if not (
218
+ isinstance(rope_scaling_long_factor, list)
219
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
220
+ ):
221
+ raise ValueError(
222
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
223
+ )
224
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
225
+ raise ValueError(
226
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
227
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32007,
6
+ 32001,
7
+ 32000
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.46.3"
11
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a8b1249fca76cc50137fe1d8957952033bed6d18ceedfe497ea46e1b5f69efc
3
+ size 339147
openvino_detokenizer.xml ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_107723" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_107723">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Convert_107745" type="Convert" version="opset1">
14
+ <data destination_type="i32" />
15
+ <input>
16
+ <port id="0" precision="I64">
17
+ <dim>-1</dim>
18
+ <dim>-1</dim>
19
+ </port>
20
+ </input>
21
+ <output>
22
+ <port id="1" precision="I32">
23
+ <dim>-1</dim>
24
+ <dim>-1</dim>
25
+ </port>
26
+ </output>
27
+ </layer>
28
+ <layer id="2" name="Constant_107693" type="Const" version="opset1">
29
+ <data element_type="u8" shape="339140" offset="0" size="339140" />
30
+ <output>
31
+ <port id="0" precision="U8">
32
+ <dim>339140</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="StringTensorUnpack_107694" type="StringTensorUnpack" version="extension">
37
+ <data mode="begins_ends" />
38
+ <input>
39
+ <port id="0" precision="U8">
40
+ <dim>339140</dim>
41
+ </port>
42
+ </input>
43
+ <output>
44
+ <port id="1" precision="I32">
45
+ <dim>-1</dim>
46
+ </port>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="U8">
51
+ <dim>-1</dim>
52
+ </port>
53
+ </output>
54
+ </layer>
55
+ <layer id="4" name="VocabDecoder_107724" type="VocabDecoder" version="extension">
56
+ <data skip_tokens="0, 1, 32000, 32001, 32002, 32003, 32004, 32005, 32006, 32007, 32008, 32009, 32010" />
57
+ <input>
58
+ <port id="0" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ <port id="1" precision="I32">
63
+ <dim>-1</dim>
64
+ </port>
65
+ <port id="2" precision="I32">
66
+ <dim>-1</dim>
67
+ </port>
68
+ <port id="3" precision="U8">
69
+ <dim>-1</dim>
70
+ </port>
71
+ </input>
72
+ <output>
73
+ <port id="4" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ <port id="5" precision="I32">
77
+ <dim>-1</dim>
78
+ </port>
79
+ <port id="6" precision="I32">
80
+ <dim>-1</dim>
81
+ </port>
82
+ <port id="7" precision="I32">
83
+ <dim>-1</dim>
84
+ </port>
85
+ <port id="8" precision="U8">
86
+ <dim>-1</dim>
87
+ </port>
88
+ </output>
89
+ </layer>
90
+ <layer id="5" name="Constant_107726" type="Const" version="opset1">
91
+ <data element_type="u8" shape="3" offset="339140" size="3" />
92
+ <output>
93
+ <port id="0" precision="U8">
94
+ <dim>3</dim>
95
+ </port>
96
+ </output>
97
+ </layer>
98
+ <layer id="6" name="Constant_107728" type="Const" version="opset1">
99
+ <data element_type="u8" shape="1" offset="339143" size="1" />
100
+ <output>
101
+ <port id="0" precision="U8">
102
+ <dim>1</dim>
103
+ </port>
104
+ </output>
105
+ </layer>
106
+ <layer id="7" name="RegexNormalization_107729" type="RegexNormalization" version="extension">
107
+ <data global_replace="true" />
108
+ <input>
109
+ <port id="0" precision="I32">
110
+ <dim>-1</dim>
111
+ </port>
112
+ <port id="1" precision="I32">
113
+ <dim>-1</dim>
114
+ </port>
115
+ <port id="2" precision="U8">
116
+ <dim>-1</dim>
117
+ </port>
118
+ <port id="3" precision="U8">
119
+ <dim>3</dim>
120
+ </port>
121
+ <port id="4" precision="U8">
122
+ <dim>1</dim>
123
+ </port>
124
+ </input>
125
+ <output>
126
+ <port id="5" precision="I32">
127
+ <dim>-1</dim>
128
+ </port>
129
+ <port id="6" precision="I32">
130
+ <dim>-1</dim>
131
+ </port>
132
+ <port id="7" precision="U8">
133
+ <dim>-1</dim>
134
+ </port>
135
+ </output>
136
+ </layer>
137
+ <layer id="8" name="ByteFallback_107730" type="ByteFallback" version="extension">
138
+ <input>
139
+ <port id="0" precision="I32">
140
+ <dim>-1</dim>
141
+ </port>
142
+ <port id="1" precision="I32">
143
+ <dim>-1</dim>
144
+ </port>
145
+ <port id="2" precision="U8">
146
+ <dim>-1</dim>
147
+ </port>
148
+ </input>
149
+ <output>
150
+ <port id="3" precision="I32">
151
+ <dim>-1</dim>
152
+ </port>
153
+ <port id="4" precision="I32">
154
+ <dim>-1</dim>
155
+ </port>
156
+ <port id="5" precision="U8">
157
+ <dim>-1</dim>
158
+ </port>
159
+ </output>
160
+ </layer>
161
+ <layer id="9" name="FuzeRagged_107731" type="FuzeRagged" version="extension">
162
+ <input>
163
+ <port id="0" precision="I32">
164
+ <dim>-1</dim>
165
+ </port>
166
+ <port id="1" precision="I32">
167
+ <dim>-1</dim>
168
+ </port>
169
+ <port id="2" precision="I32">
170
+ <dim>-1</dim>
171
+ </port>
172
+ <port id="3" precision="I32">
173
+ <dim>-1</dim>
174
+ </port>
175
+ </input>
176
+ <output>
177
+ <port id="4" precision="I32">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="5" precision="I32">
181
+ <dim>-1</dim>
182
+ </port>
183
+ </output>
184
+ </layer>
185
+ <layer id="10" name="Constant_107733" type="Const" version="opset1">
186
+ <data element_type="u8" shape="2" offset="339144" size="2" />
187
+ <output>
188
+ <port id="0" precision="U8">
189
+ <dim>2</dim>
190
+ </port>
191
+ </output>
192
+ </layer>
193
+ <layer id="11" name="Constant_107735" type="Const" version="opset1">
194
+ <data element_type="u8" shape="0" offset="339146" size="1" />
195
+ <output>
196
+ <port id="0" precision="U8">
197
+ <dim>0</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="12" name="RegexNormalization_107736" type="RegexNormalization" version="extension">
202
+ <data global_replace="true" />
203
+ <input>
204
+ <port id="0" precision="I32">
205
+ <dim>-1</dim>
206
+ </port>
207
+ <port id="1" precision="I32">
208
+ <dim>-1</dim>
209
+ </port>
210
+ <port id="2" precision="U8">
211
+ <dim>-1</dim>
212
+ </port>
213
+ <port id="3" precision="U8">
214
+ <dim>2</dim>
215
+ </port>
216
+ <port id="4" precision="U8">
217
+ <dim>0</dim>
218
+ </port>
219
+ </input>
220
+ <output>
221
+ <port id="5" precision="I32">
222
+ <dim>-1</dim>
223
+ </port>
224
+ <port id="6" precision="I32">
225
+ <dim>-1</dim>
226
+ </port>
227
+ <port id="7" precision="U8">
228
+ <dim>-1</dim>
229
+ </port>
230
+ </output>
231
+ </layer>
232
+ <layer id="13" name="StringTensorPack_107737" type="StringTensorPack" version="extension">
233
+ <data mode="begins_ends" />
234
+ <input>
235
+ <port id="0" precision="I32">
236
+ <dim>-1</dim>
237
+ </port>
238
+ <port id="1" precision="I32">
239
+ <dim>-1</dim>
240
+ </port>
241
+ <port id="2" precision="U8">
242
+ <dim>-1</dim>
243
+ </port>
244
+ </input>
245
+ <output>
246
+ <port id="3" precision="STRING" names="string_output">
247
+ <dim>-1</dim>
248
+ </port>
249
+ </output>
250
+ </layer>
251
+ <layer id="14" name="Result_107738" type="Result" version="opset1">
252
+ <input>
253
+ <port id="0" precision="STRING">
254
+ <dim>-1</dim>
255
+ </port>
256
+ </input>
257
+ </layer>
258
+ </layers>
259
+ <edges>
260
+ <edge from-layer="0" from-port="0" to-layer="1" to-port="0" />
261
+ <edge from-layer="1" from-port="1" to-layer="4" to-port="0" />
262
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
263
+ <edge from-layer="3" from-port="1" to-layer="4" to-port="1" />
264
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="2" />
265
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="3" />
266
+ <edge from-layer="4" from-port="6" to-layer="7" to-port="0" />
267
+ <edge from-layer="4" from-port="7" to-layer="7" to-port="1" />
268
+ <edge from-layer="4" from-port="8" to-layer="7" to-port="2" />
269
+ <edge from-layer="4" from-port="5" to-layer="9" to-port="1" />
270
+ <edge from-layer="4" from-port="4" to-layer="9" to-port="0" />
271
+ <edge from-layer="5" from-port="0" to-layer="7" to-port="3" />
272
+ <edge from-layer="6" from-port="0" to-layer="7" to-port="4" />
273
+ <edge from-layer="7" from-port="7" to-layer="8" to-port="2" />
274
+ <edge from-layer="7" from-port="6" to-layer="8" to-port="1" />
275
+ <edge from-layer="7" from-port="5" to-layer="8" to-port="0" />
276
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="2" />
277
+ <edge from-layer="8" from-port="4" to-layer="9" to-port="3" />
278
+ <edge from-layer="8" from-port="5" to-layer="12" to-port="2" />
279
+ <edge from-layer="9" from-port="4" to-layer="12" to-port="0" />
280
+ <edge from-layer="9" from-port="5" to-layer="12" to-port="1" />
281
+ <edge from-layer="10" from-port="0" to-layer="12" to-port="3" />
282
+ <edge from-layer="11" from-port="0" to-layer="12" to-port="4" />
283
+ <edge from-layer="12" from-port="5" to-layer="13" to-port="0" />
284
+ <edge from-layer="12" from-port="6" to-layer="13" to-port="1" />
285
+ <edge from-layer="12" from-port="7" to-layer="13" to-port="2" />
286
+ <edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
287
+ </edges>
288
+ <rt_info>
289
+ <add_attention_mask value="True" />
290
+ <add_prefix_space />
291
+ <add_special_tokens value="True" />
292
+ <bos_token_id value="1" />
293
+ <chat_template value="{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'&lt;|system|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% elif message['role'] == 'user' %}{{'&lt;|user|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% elif message['role'] == 'assistant' %}{{'&lt;|assistant|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|assistant|>&#10;' }}{% else %}{{ eos_token }}{% endif %}" />
294
+ <clean_up_tokenization_spaces />
295
+ <detokenizer_input_type value="i64" />
296
+ <eos_token_id value="32000" />
297
+ <handle_special_tokens_with_re />
298
+ <number_of_inputs value="1" />
299
+ <openvino_tokenizers_version value="2024.5.0.0" />
300
+ <openvino_version value="2024.5.0" />
301
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
302
+ <pad_token_id value="32000" />
303
+ <sentencepiece_version value="0.2.0" />
304
+ <skip_special_tokens value="True" />
305
+ <streaming_detokenizer value="False" />
306
+ <tiktoken_version value="0.8.0" />
307
+ <tokenizer_output_type value="i64" />
308
+ <tokenizers_version value="0.20.3" />
309
+ <transformers_version value="4.46.3" />
310
+ <use_max_padding value="False" />
311
+ <use_sentencepiece_backend value="False" />
312
+ <utf8_replace_mode />
313
+ <with_detokenizer value="True" />
314
+ </rt_info>
315
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec4cbd0b47cc5c84e08416cb2d3c869eeca5022e3eabad915b47dd44c7fcaf5c
3
+ size 7642159444
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22c222c383dac6ccc43b495af24d81193b461af6f9c9d3c256aef2b0f2a26175
3
+ size 1262065
openvino_tokenizer.xml ADDED
@@ -0,0 +1,807 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_107605" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="Parameter_107605">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_107611" type="Const" version="opset1">
13
+ <data element_type="i64" shape="" offset="0" size="8" />
14
+ <output>
15
+ <port id="0" precision="I64" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="StringTensorUnpack_107606" type="StringTensorUnpack" version="extension">
19
+ <data mode="begins_ends" />
20
+ <input>
21
+ <port id="0" precision="STRING">
22
+ <dim>-1</dim>
23
+ </port>
24
+ </input>
25
+ <output>
26
+ <port id="1" precision="I32">
27
+ <dim>-1</dim>
28
+ </port>
29
+ <port id="2" precision="I32">
30
+ <dim>-1</dim>
31
+ </port>
32
+ <port id="3" precision="U8">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </output>
36
+ </layer>
37
+ <layer id="3" name="ShapeOf_107607" type="ShapeOf" version="opset3">
38
+ <data output_type="i64" />
39
+ <input>
40
+ <port id="0" precision="I32">
41
+ <dim>-1</dim>
42
+ </port>
43
+ </input>
44
+ <output>
45
+ <port id="1" precision="I64">
46
+ <dim>1</dim>
47
+ </port>
48
+ </output>
49
+ </layer>
50
+ <layer id="4" name="Constant_107608" type="Const" version="opset1">
51
+ <data element_type="i64" shape="" offset="0" size="8" />
52
+ <output>
53
+ <port id="0" precision="I64" />
54
+ </output>
55
+ </layer>
56
+ <layer id="5" name="Constant_107609" type="Const" version="opset1">
57
+ <data element_type="i64" shape="" offset="0" size="8" />
58
+ <output>
59
+ <port id="0" precision="I64" />
60
+ </output>
61
+ </layer>
62
+ <layer id="6" name="Gather_107610" type="Gather" version="opset8">
63
+ <data batch_dims="0" />
64
+ <input>
65
+ <port id="0" precision="I64">
66
+ <dim>1</dim>
67
+ </port>
68
+ <port id="1" precision="I64" />
69
+ <port id="2" precision="I64" />
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="I64" />
73
+ </output>
74
+ </layer>
75
+ <layer id="7" name="Constant_107612" type="Const" version="opset1">
76
+ <data element_type="i64" shape="" offset="8" size="8" />
77
+ <output>
78
+ <port id="0" precision="I64" />
79
+ </output>
80
+ </layer>
81
+ <layer id="8" name="Range_107613" type="Range" version="opset4">
82
+ <data output_type="i32" />
83
+ <input>
84
+ <port id="0" precision="I64" />
85
+ <port id="1" precision="I64" />
86
+ <port id="2" precision="I64" />
87
+ </input>
88
+ <output>
89
+ <port id="3" precision="I32">
90
+ <dim>-1</dim>
91
+ </port>
92
+ </output>
93
+ </layer>
94
+ <layer id="9" name="Constant_107614" type="Const" version="opset1">
95
+ <data element_type="i64" shape="" offset="8" size="8" />
96
+ <output>
97
+ <port id="0" precision="I64" />
98
+ </output>
99
+ </layer>
100
+ <layer id="10" name="Constant_107615" type="Const" version="opset1">
101
+ <data element_type="i64" shape="" offset="8" size="8" />
102
+ <output>
103
+ <port id="0" precision="I64" />
104
+ </output>
105
+ </layer>
106
+ <layer id="11" name="Add_107616" type="Add" version="opset1">
107
+ <data auto_broadcast="numpy" />
108
+ <input>
109
+ <port id="0" precision="I64" />
110
+ <port id="1" precision="I64" />
111
+ </input>
112
+ <output>
113
+ <port id="2" precision="I64" />
114
+ </output>
115
+ </layer>
116
+ <layer id="12" name="Constant_107617" type="Const" version="opset1">
117
+ <data element_type="i64" shape="" offset="8" size="8" />
118
+ <output>
119
+ <port id="0" precision="I64" />
120
+ </output>
121
+ </layer>
122
+ <layer id="13" name="Range_107618" type="Range" version="opset4">
123
+ <data output_type="i32" />
124
+ <input>
125
+ <port id="0" precision="I64" />
126
+ <port id="1" precision="I64" />
127
+ <port id="2" precision="I64" />
128
+ </input>
129
+ <output>
130
+ <port id="3" precision="I32">
131
+ <dim>-1</dim>
132
+ </port>
133
+ </output>
134
+ </layer>
135
+ <layer id="14" name="Constant_107680" type="Const" version="opset1">
136
+ <data element_type="u8" shape="328" offset="16" size="328" />
137
+ <output>
138
+ <port id="0" precision="U8">
139
+ <dim>328</dim>
140
+ </port>
141
+ </output>
142
+ </layer>
143
+ <layer id="15" name="SpecialTokensSplit_107681" type="SpecialTokensSplit" version="extension">
144
+ <input>
145
+ <port id="0" precision="I32">
146
+ <dim>-1</dim>
147
+ </port>
148
+ <port id="1" precision="I32">
149
+ <dim>-1</dim>
150
+ </port>
151
+ <port id="2" precision="I32">
152
+ <dim>-1</dim>
153
+ </port>
154
+ <port id="3" precision="I32">
155
+ <dim>-1</dim>
156
+ </port>
157
+ <port id="4" precision="U8">
158
+ <dim>-1</dim>
159
+ </port>
160
+ <port id="5" precision="U8">
161
+ <dim>328</dim>
162
+ </port>
163
+ </input>
164
+ <output>
165
+ <port id="6" precision="I32">
166
+ <dim>-1</dim>
167
+ </port>
168
+ <port id="7" precision="I32">
169
+ <dim>-1</dim>
170
+ </port>
171
+ <port id="8" precision="I32">
172
+ <dim>-1</dim>
173
+ </port>
174
+ <port id="9" precision="I32">
175
+ <dim>-1</dim>
176
+ </port>
177
+ <port id="10" precision="U8">
178
+ <dim>-1</dim>
179
+ </port>
180
+ <port id="11" precision="BOOL">
181
+ <dim>-1</dim>
182
+ </port>
183
+ </output>
184
+ </layer>
185
+ <layer id="16" name="Constant_107683" type="Const" version="opset1">
186
+ <data element_type="u8" shape="7" offset="344" size="7" />
187
+ <output>
188
+ <port id="0" precision="U8">
189
+ <dim>7</dim>
190
+ </port>
191
+ </output>
192
+ </layer>
193
+ <layer id="17" name="Constant_107685" type="Const" version="opset1">
194
+ <data element_type="u8" shape="5" offset="351" size="5" />
195
+ <output>
196
+ <port id="0" precision="U8">
197
+ <dim>5</dim>
198
+ </port>
199
+ </output>
200
+ </layer>
201
+ <layer id="18" name="RegexNormalization_107686" type="RegexNormalization" version="extension">
202
+ <data global_replace="true" />
203
+ <input>
204
+ <port id="0" precision="I32">
205
+ <dim>-1</dim>
206
+ </port>
207
+ <port id="1" precision="I32">
208
+ <dim>-1</dim>
209
+ </port>
210
+ <port id="2" precision="U8">
211
+ <dim>-1</dim>
212
+ </port>
213
+ <port id="3" precision="BOOL">
214
+ <dim>-1</dim>
215
+ </port>
216
+ <port id="4" precision="U8">
217
+ <dim>7</dim>
218
+ </port>
219
+ <port id="5" precision="U8">
220
+ <dim>5</dim>
221
+ </port>
222
+ </input>
223
+ <output>
224
+ <port id="6" precision="I32">
225
+ <dim>-1</dim>
226
+ </port>
227
+ <port id="7" precision="I32">
228
+ <dim>-1</dim>
229
+ </port>
230
+ <port id="8" precision="U8">
231
+ <dim>-1</dim>
232
+ </port>
233
+ <port id="9" precision="BOOL">
234
+ <dim>-1</dim>
235
+ </port>
236
+ </output>
237
+ </layer>
238
+ <layer id="19" name="Constant_107688" type="Const" version="opset1">
239
+ <data element_type="u8" shape="1" offset="356" size="1" />
240
+ <output>
241
+ <port id="0" precision="U8">
242
+ <dim>1</dim>
243
+ </port>
244
+ </output>
245
+ </layer>
246
+ <layer id="20" name="Constant_107690" type="Const" version="opset1">
247
+ <data element_type="u8" shape="3" offset="357" size="3" />
248
+ <output>
249
+ <port id="0" precision="U8">
250
+ <dim>3</dim>
251
+ </port>
252
+ </output>
253
+ </layer>
254
+ <layer id="21" name="RegexNormalization_107691" type="RegexNormalization" version="extension">
255
+ <data global_replace="true" />
256
+ <input>
257
+ <port id="0" precision="I32">
258
+ <dim>-1</dim>
259
+ </port>
260
+ <port id="1" precision="I32">
261
+ <dim>-1</dim>
262
+ </port>
263
+ <port id="2" precision="U8">
264
+ <dim>-1</dim>
265
+ </port>
266
+ <port id="3" precision="BOOL">
267
+ <dim>-1</dim>
268
+ </port>
269
+ <port id="4" precision="U8">
270
+ <dim>1</dim>
271
+ </port>
272
+ <port id="5" precision="U8">
273
+ <dim>3</dim>
274
+ </port>
275
+ </input>
276
+ <output>
277
+ <port id="6" precision="I32">
278
+ <dim>-1</dim>
279
+ </port>
280
+ <port id="7" precision="I32">
281
+ <dim>-1</dim>
282
+ </port>
283
+ <port id="8" precision="U8">
284
+ <dim>-1</dim>
285
+ </port>
286
+ <port id="9" precision="BOOL">
287
+ <dim>-1</dim>
288
+ </port>
289
+ </output>
290
+ </layer>
291
+ <layer id="22" name="Constant_107693" type="Const" version="opset1">
292
+ <data element_type="u8" shape="339140" offset="360" size="339140" />
293
+ <output>
294
+ <port id="0" precision="U8">
295
+ <dim>339140</dim>
296
+ </port>
297
+ </output>
298
+ </layer>
299
+ <layer id="23" name="StringTensorUnpack_107694" type="StringTensorUnpack" version="extension">
300
+ <data mode="begins_ends" />
301
+ <input>
302
+ <port id="0" precision="U8">
303
+ <dim>339140</dim>
304
+ </port>
305
+ </input>
306
+ <output>
307
+ <port id="1" precision="I32">
308
+ <dim>-1</dim>
309
+ </port>
310
+ <port id="2" precision="I32">
311
+ <dim>-1</dim>
312
+ </port>
313
+ <port id="3" precision="U8">
314
+ <dim>-1</dim>
315
+ </port>
316
+ </output>
317
+ </layer>
318
+ <layer id="24" name="Constant_107699" type="Const" version="opset1">
319
+ <data element_type="u8" shape="499127" offset="339500" size="499127" />
320
+ <output>
321
+ <port id="0" precision="U8">
322
+ <dim>499127</dim>
323
+ </port>
324
+ </output>
325
+ </layer>
326
+ <layer id="25" name="StringTensorUnpack_107700" type="StringTensorUnpack" version="extension">
327
+ <data mode="begins_ends" />
328
+ <input>
329
+ <port id="0" precision="U8">
330
+ <dim>499127</dim>
331
+ </port>
332
+ </input>
333
+ <output>
334
+ <port id="1" precision="I32">
335
+ <dim>-1</dim>
336
+ </port>
337
+ <port id="2" precision="I32">
338
+ <dim>-1</dim>
339
+ </port>
340
+ <port id="3" precision="U8">
341
+ <dim>-1</dim>
342
+ </port>
343
+ </output>
344
+ </layer>
345
+ <layer id="26" name="Constant_107702" type="Const" version="opset1">
346
+ <data element_type="u8" shape="412810" offset="838627" size="412810" />
347
+ <output>
348
+ <port id="0" precision="U8">
349
+ <dim>412810</dim>
350
+ </port>
351
+ </output>
352
+ </layer>
353
+ <layer id="27" name="StringTensorUnpack_107703" type="StringTensorUnpack" version="extension">
354
+ <data mode="begins_ends" />
355
+ <input>
356
+ <port id="0" precision="U8">
357
+ <dim>412810</dim>
358
+ </port>
359
+ </input>
360
+ <output>
361
+ <port id="1" precision="I32">
362
+ <dim>-1</dim>
363
+ </port>
364
+ <port id="2" precision="I32">
365
+ <dim>-1</dim>
366
+ </port>
367
+ <port id="3" precision="U8">
368
+ <dim>-1</dim>
369
+ </port>
370
+ </output>
371
+ </layer>
372
+ <layer id="28" name="Constant_107696" type="Const" version="opset1">
373
+ <data element_type="u8" shape="8716" offset="1251437" size="8716" />
374
+ <output>
375
+ <port id="0" precision="U8">
376
+ <dim>8716</dim>
377
+ </port>
378
+ </output>
379
+ </layer>
380
+ <layer id="29" name="StringTensorUnpack_107697" type="StringTensorUnpack" version="extension">
381
+ <data mode="begins_ends" />
382
+ <input>
383
+ <port id="0" precision="U8">
384
+ <dim>8716</dim>
385
+ </port>
386
+ </input>
387
+ <output>
388
+ <port id="1" precision="I32">
389
+ <dim>-1</dim>
390
+ </port>
391
+ <port id="2" precision="I32">
392
+ <dim>-1</dim>
393
+ </port>
394
+ <port id="3" precision="U8">
395
+ <dim>-1</dim>
396
+ </port>
397
+ </output>
398
+ </layer>
399
+ <layer id="30" name="Constant_107704" type="Const" version="opset1">
400
+ <data element_type="i32" shape="475" offset="1260153" size="1900" />
401
+ <output>
402
+ <port id="0" precision="I32">
403
+ <dim>475</dim>
404
+ </port>
405
+ </output>
406
+ </layer>
407
+ <layer id="31" name="BPETokenizer_107705" type="BPETokenizer" version="extension">
408
+ <data unk_token="&lt;unk>" fuse_unk="true" suffix_indicator="" end_suffix="" byte_fallback="true" cache_capacity="20000" />
409
+ <input>
410
+ <port id="0" precision="I32">
411
+ <dim>-1</dim>
412
+ </port>
413
+ <port id="1" precision="I32">
414
+ <dim>-1</dim>
415
+ </port>
416
+ <port id="2" precision="I32">
417
+ <dim>-1</dim>
418
+ </port>
419
+ <port id="3" precision="I32">
420
+ <dim>-1</dim>
421
+ </port>
422
+ <port id="4" precision="U8">
423
+ <dim>-1</dim>
424
+ </port>
425
+ <port id="5" precision="I32">
426
+ <dim>-1</dim>
427
+ </port>
428
+ <port id="6" precision="I32">
429
+ <dim>-1</dim>
430
+ </port>
431
+ <port id="7" precision="U8">
432
+ <dim>-1</dim>
433
+ </port>
434
+ <port id="8" precision="I32">
435
+ <dim>-1</dim>
436
+ </port>
437
+ <port id="9" precision="I32">
438
+ <dim>-1</dim>
439
+ </port>
440
+ <port id="10" precision="U8">
441
+ <dim>-1</dim>
442
+ </port>
443
+ <port id="11" precision="I32">
444
+ <dim>-1</dim>
445
+ </port>
446
+ <port id="12" precision="I32">
447
+ <dim>-1</dim>
448
+ </port>
449
+ <port id="13" precision="U8">
450
+ <dim>-1</dim>
451
+ </port>
452
+ <port id="14" precision="I32">
453
+ <dim>-1</dim>
454
+ </port>
455
+ <port id="15" precision="I32">
456
+ <dim>-1</dim>
457
+ </port>
458
+ <port id="16" precision="U8">
459
+ <dim>-1</dim>
460
+ </port>
461
+ <port id="17" precision="I32">
462
+ <dim>475</dim>
463
+ </port>
464
+ </input>
465
+ <output>
466
+ <port id="18" precision="I32">
467
+ <dim>-1</dim>
468
+ </port>
469
+ <port id="19" precision="I32">
470
+ <dim>-1</dim>
471
+ </port>
472
+ <port id="20" precision="I32">
473
+ <dim>-1</dim>
474
+ </port>
475
+ </output>
476
+ </layer>
477
+ <layer id="32" name="Subtract_107706" type="Subtract" version="opset1">
478
+ <data auto_broadcast="numpy" />
479
+ <input>
480
+ <port id="0" precision="I32">
481
+ <dim>-1</dim>
482
+ </port>
483
+ <port id="1" precision="I32">
484
+ <dim>-1</dim>
485
+ </port>
486
+ </input>
487
+ <output>
488
+ <port id="2" precision="I32">
489
+ <dim>-1</dim>
490
+ </port>
491
+ </output>
492
+ </layer>
493
+ <layer id="33" name="Constant_107707" type="Const" version="opset1">
494
+ <data element_type="i32" shape="" offset="1262053" size="4" />
495
+ <output>
496
+ <port id="0" precision="I32" />
497
+ </output>
498
+ </layer>
499
+ <layer id="34" name="Minimum_107708" type="Minimum" version="opset1">
500
+ <data auto_broadcast="numpy" />
501
+ <input>
502
+ <port id="0" precision="I32">
503
+ <dim>-1</dim>
504
+ </port>
505
+ <port id="1" precision="I32" />
506
+ </input>
507
+ <output>
508
+ <port id="2" precision="I32">
509
+ <dim>-1</dim>
510
+ </port>
511
+ </output>
512
+ </layer>
513
+ <layer id="35" name="Subtract_107709" type="Subtract" version="opset1">
514
+ <data auto_broadcast="numpy" />
515
+ <input>
516
+ <port id="0" precision="I32">
517
+ <dim>-1</dim>
518
+ </port>
519
+ <port id="1" precision="I32">
520
+ <dim>-1</dim>
521
+ </port>
522
+ </input>
523
+ <output>
524
+ <port id="2" precision="I32">
525
+ <dim>-1</dim>
526
+ </port>
527
+ </output>
528
+ </layer>
529
+ <layer id="36" name="Constant_107710" type="Const" version="opset1">
530
+ <data element_type="i32" shape="1" offset="1262057" size="4" />
531
+ <output>
532
+ <port id="0" precision="I32">
533
+ <dim>1</dim>
534
+ </port>
535
+ </output>
536
+ </layer>
537
+ <layer id="37" name="CombineSegments_107711" type="CombineSegments" version="extension">
538
+ <input>
539
+ <port id="0" precision="I32">
540
+ <dim>-1</dim>
541
+ </port>
542
+ <port id="1" precision="I32">
543
+ <dim>-1</dim>
544
+ </port>
545
+ <port id="2" precision="I32">
546
+ <dim>-1</dim>
547
+ </port>
548
+ <port id="3" precision="I32">
549
+ <dim>1</dim>
550
+ </port>
551
+ </input>
552
+ <output>
553
+ <port id="4" precision="I32">
554
+ <dim>-1</dim>
555
+ </port>
556
+ <port id="5" precision="I32">
557
+ <dim>-1</dim>
558
+ </port>
559
+ <port id="6" precision="I32">
560
+ <dim>-1</dim>
561
+ </port>
562
+ <port id="7" precision="I32">
563
+ <dim>-1</dim>
564
+ </port>
565
+ <port id="8" precision="I32">
566
+ <dim>-1</dim>
567
+ </port>
568
+ <port id="9" precision="I32">
569
+ <dim>-1</dim>
570
+ </port>
571
+ </output>
572
+ </layer>
573
+ <layer id="38" name="Subtract_107712" type="Subtract" version="opset1">
574
+ <data auto_broadcast="numpy" />
575
+ <input>
576
+ <port id="0" precision="I32">
577
+ <dim>-1</dim>
578
+ </port>
579
+ <port id="1" precision="I32">
580
+ <dim>-1</dim>
581
+ </port>
582
+ </input>
583
+ <output>
584
+ <port id="2" precision="I32">
585
+ <dim>-1</dim>
586
+ </port>
587
+ </output>
588
+ </layer>
589
+ <layer id="39" name="Constant_107713" type="Const" version="opset1">
590
+ <data element_type="i32" shape="" offset="1262057" size="4" />
591
+ <output>
592
+ <port id="0" precision="I32" />
593
+ </output>
594
+ </layer>
595
+ <layer id="40" name="ReduceMax_107714" type="ReduceMax" version="opset1">
596
+ <data keep_dims="false" />
597
+ <input>
598
+ <port id="0" precision="I32">
599
+ <dim>-1</dim>
600
+ </port>
601
+ <port id="1" precision="I32" />
602
+ </input>
603
+ <output>
604
+ <port id="2" precision="I32" />
605
+ </output>
606
+ </layer>
607
+ <layer id="41" name="Constant_107715" type="Const" version="opset1">
608
+ <data element_type="i32" shape="" offset="1262061" size="4" />
609
+ <output>
610
+ <port id="0" precision="I32" />
611
+ </output>
612
+ </layer>
613
+ <layer id="42" name="RaggedToDense_107716" type="RaggedToDense" version="extension">
614
+ <data pad_right="false" />
615
+ <input>
616
+ <port id="0" precision="I32">
617
+ <dim>-1</dim>
618
+ </port>
619
+ <port id="1" precision="I32">
620
+ <dim>-1</dim>
621
+ </port>
622
+ <port id="2" precision="I32">
623
+ <dim>-1</dim>
624
+ </port>
625
+ <port id="3" precision="I32" />
626
+ <port id="4" precision="I32" />
627
+ </input>
628
+ <output>
629
+ <port id="5" precision="I32">
630
+ <dim>-1</dim>
631
+ <dim>-1</dim>
632
+ </port>
633
+ <port id="6" precision="BOOL">
634
+ <dim>-1</dim>
635
+ <dim>-1</dim>
636
+ </port>
637
+ </output>
638
+ </layer>
639
+ <layer id="43" name="Convert_107717" type="Convert" version="opset1">
640
+ <data destination_type="i32" />
641
+ <input>
642
+ <port id="0" precision="BOOL">
643
+ <dim>-1</dim>
644
+ <dim>-1</dim>
645
+ </port>
646
+ </input>
647
+ <output>
648
+ <port id="1" precision="I32">
649
+ <dim>-1</dim>
650
+ <dim>-1</dim>
651
+ </port>
652
+ </output>
653
+ </layer>
654
+ <layer id="44" name="Convert_107717" type="Convert" version="opset1">
655
+ <data destination_type="i64" />
656
+ <input>
657
+ <port id="0" precision="I32">
658
+ <dim>-1</dim>
659
+ <dim>-1</dim>
660
+ </port>
661
+ </input>
662
+ <output>
663
+ <port id="1" precision="I64" names="attention_mask">
664
+ <dim>-1</dim>
665
+ <dim>-1</dim>
666
+ </port>
667
+ </output>
668
+ </layer>
669
+ <layer id="46" name="RaggedToDense_107716.0" type="Convert" version="opset1">
670
+ <data destination_type="i64" />
671
+ <input>
672
+ <port id="0" precision="I32">
673
+ <dim>-1</dim>
674
+ <dim>-1</dim>
675
+ </port>
676
+ </input>
677
+ <output>
678
+ <port id="1" precision="I64" names="input_ids">
679
+ <dim>-1</dim>
680
+ <dim>-1</dim>
681
+ </port>
682
+ </output>
683
+ </layer>
684
+ <layer id="47" name="Result_107720" type="Result" version="opset1">
685
+ <input>
686
+ <port id="0" precision="I64">
687
+ <dim>-1</dim>
688
+ <dim>-1</dim>
689
+ </port>
690
+ </input>
691
+ </layer>
692
+ <layer id="45" name="Result_107722" type="Result" version="opset1">
693
+ <input>
694
+ <port id="0" precision="I64">
695
+ <dim>-1</dim>
696
+ <dim>-1</dim>
697
+ </port>
698
+ </input>
699
+ </layer>
700
+ </layers>
701
+ <edges>
702
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
703
+ <edge from-layer="1" from-port="0" to-layer="8" to-port="0" />
704
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="0" />
705
+ <edge from-layer="2" from-port="3" to-layer="15" to-port="4" />
706
+ <edge from-layer="2" from-port="2" to-layer="15" to-port="3" />
707
+ <edge from-layer="2" from-port="1" to-layer="15" to-port="2" />
708
+ <edge from-layer="3" from-port="1" to-layer="6" to-port="0" />
709
+ <edge from-layer="4" from-port="0" to-layer="6" to-port="1" />
710
+ <edge from-layer="5" from-port="0" to-layer="6" to-port="2" />
711
+ <edge from-layer="6" from-port="3" to-layer="8" to-port="1" />
712
+ <edge from-layer="6" from-port="3" to-layer="11" to-port="0" />
713
+ <edge from-layer="7" from-port="0" to-layer="8" to-port="2" />
714
+ <edge from-layer="8" from-port="3" to-layer="15" to-port="0" />
715
+ <edge from-layer="9" from-port="0" to-layer="13" to-port="0" />
716
+ <edge from-layer="10" from-port="0" to-layer="11" to-port="1" />
717
+ <edge from-layer="11" from-port="2" to-layer="13" to-port="1" />
718
+ <edge from-layer="12" from-port="0" to-layer="13" to-port="2" />
719
+ <edge from-layer="13" from-port="3" to-layer="15" to-port="1" />
720
+ <edge from-layer="14" from-port="0" to-layer="15" to-port="5" />
721
+ <edge from-layer="15" from-port="9" to-layer="18" to-port="1" />
722
+ <edge from-layer="15" from-port="6" to-layer="31" to-port="0" />
723
+ <edge from-layer="15" from-port="7" to-layer="31" to-port="1" />
724
+ <edge from-layer="15" from-port="11" to-layer="18" to-port="3" />
725
+ <edge from-layer="15" from-port="10" to-layer="18" to-port="2" />
726
+ <edge from-layer="15" from-port="8" to-layer="18" to-port="0" />
727
+ <edge from-layer="16" from-port="0" to-layer="18" to-port="4" />
728
+ <edge from-layer="17" from-port="0" to-layer="18" to-port="5" />
729
+ <edge from-layer="18" from-port="6" to-layer="21" to-port="0" />
730
+ <edge from-layer="18" from-port="7" to-layer="21" to-port="1" />
731
+ <edge from-layer="18" from-port="8" to-layer="21" to-port="2" />
732
+ <edge from-layer="18" from-port="9" to-layer="21" to-port="3" />
733
+ <edge from-layer="19" from-port="0" to-layer="21" to-port="4" />
734
+ <edge from-layer="20" from-port="0" to-layer="21" to-port="5" />
735
+ <edge from-layer="21" from-port="8" to-layer="31" to-port="4" />
736
+ <edge from-layer="21" from-port="7" to-layer="31" to-port="3" />
737
+ <edge from-layer="21" from-port="6" to-layer="31" to-port="2" />
738
+ <edge from-layer="22" from-port="0" to-layer="23" to-port="0" />
739
+ <edge from-layer="23" from-port="1" to-layer="31" to-port="5" />
740
+ <edge from-layer="23" from-port="2" to-layer="31" to-port="6" />
741
+ <edge from-layer="23" from-port="3" to-layer="31" to-port="7" />
742
+ <edge from-layer="24" from-port="0" to-layer="25" to-port="0" />
743
+ <edge from-layer="25" from-port="1" to-layer="31" to-port="8" />
744
+ <edge from-layer="25" from-port="2" to-layer="31" to-port="9" />
745
+ <edge from-layer="25" from-port="3" to-layer="31" to-port="10" />
746
+ <edge from-layer="26" from-port="0" to-layer="27" to-port="0" />
747
+ <edge from-layer="27" from-port="3" to-layer="31" to-port="13" />
748
+ <edge from-layer="27" from-port="2" to-layer="31" to-port="12" />
749
+ <edge from-layer="27" from-port="1" to-layer="31" to-port="11" />
750
+ <edge from-layer="28" from-port="0" to-layer="29" to-port="0" />
751
+ <edge from-layer="29" from-port="1" to-layer="31" to-port="14" />
752
+ <edge from-layer="29" from-port="2" to-layer="31" to-port="15" />
753
+ <edge from-layer="29" from-port="3" to-layer="31" to-port="16" />
754
+ <edge from-layer="30" from-port="0" to-layer="31" to-port="17" />
755
+ <edge from-layer="31" from-port="19" to-layer="32" to-port="0" />
756
+ <edge from-layer="31" from-port="18" to-layer="32" to-port="1" />
757
+ <edge from-layer="31" from-port="19" to-layer="35" to-port="0" />
758
+ <edge from-layer="31" from-port="20" to-layer="37" to-port="2" />
759
+ <edge from-layer="31" from-port="19" to-layer="37" to-port="1" />
760
+ <edge from-layer="32" from-port="2" to-layer="34" to-port="0" />
761
+ <edge from-layer="33" from-port="0" to-layer="34" to-port="1" />
762
+ <edge from-layer="34" from-port="2" to-layer="35" to-port="1" />
763
+ <edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
764
+ <edge from-layer="36" from-port="0" to-layer="37" to-port="3" />
765
+ <edge from-layer="37" from-port="5" to-layer="42" to-port="1" />
766
+ <edge from-layer="37" from-port="6" to-layer="42" to-port="2" />
767
+ <edge from-layer="37" from-port="4" to-layer="42" to-port="0" />
768
+ <edge from-layer="37" from-port="4" to-layer="38" to-port="1" />
769
+ <edge from-layer="37" from-port="5" to-layer="38" to-port="0" />
770
+ <edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
771
+ <edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
772
+ <edge from-layer="40" from-port="2" to-layer="42" to-port="3" />
773
+ <edge from-layer="41" from-port="0" to-layer="42" to-port="4" />
774
+ <edge from-layer="42" from-port="6" to-layer="43" to-port="0" />
775
+ <edge from-layer="42" from-port="5" to-layer="46" to-port="0" />
776
+ <edge from-layer="43" from-port="1" to-layer="44" to-port="0" />
777
+ <edge from-layer="44" from-port="1" to-layer="45" to-port="0" />
778
+ <edge from-layer="46" from-port="1" to-layer="47" to-port="0" />
779
+ </edges>
780
+ <rt_info>
781
+ <add_attention_mask value="True" />
782
+ <add_prefix_space />
783
+ <add_special_tokens value="True" />
784
+ <bos_token_id value="1" />
785
+ <chat_template value="{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'&lt;|system|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% elif message['role'] == 'user' %}{{'&lt;|user|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% elif message['role'] == 'assistant' %}{{'&lt;|assistant|>&#10;' + message['content'] + '&lt;|end|>&#10;'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '&lt;|assistant|>&#10;' }}{% else %}{{ eos_token }}{% endif %}" />
786
+ <clean_up_tokenization_spaces />
787
+ <detokenizer_input_type value="i64" />
788
+ <eos_token_id value="32000" />
789
+ <handle_special_tokens_with_re />
790
+ <number_of_inputs value="1" />
791
+ <openvino_tokenizers_version value="2024.5.0.0" />
792
+ <openvino_version value="2024.5.0" />
793
+ <original_tokenizer_class value="&lt;class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>" />
794
+ <pad_token_id value="32000" />
795
+ <sentencepiece_version value="0.2.0" />
796
+ <skip_special_tokens value="True" />
797
+ <streaming_detokenizer value="False" />
798
+ <tiktoken_version value="0.8.0" />
799
+ <tokenizer_output_type value="i64" />
800
+ <tokenizers_version value="0.20.3" />
801
+ <transformers_version value="4.46.3" />
802
+ <use_max_padding value="False" />
803
+ <use_sentencepiece_backend value="False" />
804
+ <utf8_replace_mode />
805
+ <with_detokenizer value="True" />
806
+ </rt_info>
807
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|endoftext|>",
123
+ "legacy": false,
124
+ "model_max_length": 131072,
125
+ "pad_token": "<|endoftext|>",
126
+ "padding_side": "left",
127
+ "sp_model_kwargs": {},
128
+ "tokenizer_class": "LlamaTokenizer",
129
+ "unk_token": "<unk>",
130
+ "use_default_system_prompt": false
131
+ }