openvino-ci commited on
Commit
337d30a
·
verified ·
1 Parent(s): ccda360

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ license_link: https://choosealicense.com/licenses/mit/
4
+ ---
5
+ # Phi-3-medium-4k-instruct-int4-ov
6
+ * Model creator: [Microsoft](https://huggingface.co/microsoft)
7
+ * Original model: [Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct)
8
+
9
+ ## Description
10
+ This is [Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT4 by [NNCF](https://github.com/openvinotoolkit/nncf).
11
+
12
+ ## Quantization Parameters
13
+
14
+ Weight compression was performed using `nncf.compress_weights` with the following parameters:
15
+
16
+ * mode: **int4_asym**
17
+ * ratio: **0.8**
18
+ * group_size: **128**
19
+
20
+ For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
21
+
22
+
23
+ ## Compatibility
24
+
25
+ The provided OpenVINO™ IR model is compatible with:
26
+
27
+ * OpenVINO version 2024.1.0 and higher
28
+ * Optimum Intel 1.16.0 and higher
29
+
30
+ ## Running Model Inference
31
+
32
+ 1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
33
+
34
+ ```
35
+ pip install optimum[openvino]
36
+ ```
37
+
38
+ 2. Run model inference:
39
+
40
+ ```
41
+ from transformers import AutoTokenizer
42
+ from optimum.intel.openvino import OVModelForCausalLM
43
+
44
+ model_id = "OpenVINO/Phi-3-medium-4k-instruct-int4-ov"
45
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
46
+ model = OVModelForCausalLM.from_pretrained(model_id)
47
+
48
+ inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
49
+
50
+ outputs = model.generate(**inputs, max_length=200)
51
+ text = tokenizer.batch_decode(outputs)[0]
52
+ print(text)
53
+ ```
54
+
55
+ For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
56
+
57
+ ## Limitations
58
+
59
+ Check the original model card for [limitations]().
60
+
61
+ ## Legal information
62
+
63
+ The original model is distributed under [mit](https://choosealicense.com/licenses/mit/) license. More details can be found in [original model card](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct).
64
+
65
+ ## Disclaimer
66
+
67
+ Intel is committed to respecting human rights and avoiding causing or contributing to adverse impacts on human rights. See [Intel’s Global Human Rights Principles](https://www.intel.com/content/dam/www/central-libraries/us/en/documents/policy-human-rights.pdf). Intel’s products and software are intended only to be used in applications that do not cause or contribute to adverse impacts on human rights.
added_tokens.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "<|assistant|>": 32001,
3
+ "<|endoftext|>": 32000,
4
+ "<|end|>": 32007,
5
+ "<|placeholder1|>": 32002,
6
+ "<|placeholder2|>": 32003,
7
+ "<|placeholder3|>": 32004,
8
+ "<|placeholder4|>": 32005,
9
+ "<|placeholder5|>": 32008,
10
+ "<|placeholder6|>": 32009,
11
+ "<|system|>": 32006,
12
+ "<|user|>": 32010
13
+ }
config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "OpenVINO/Phi-3-medium-4k-instruct-int4-ov",
3
+ "architectures": [
4
+ "Phi3ForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_phi3.Phi3Config",
10
+ "AutoModelForCausalLM": "modeling_phi3.Phi3ForCausalLM"
11
+ },
12
+ "bos_token_id": 1,
13
+ "embd_pdrop": 0.0,
14
+ "eos_token_id": 32000,
15
+ "hidden_act": "silu",
16
+ "hidden_size": 5120,
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 17920,
19
+ "max_position_embeddings": 4096,
20
+ "model_type": "phi3",
21
+ "num_attention_heads": 40,
22
+ "num_hidden_layers": 40,
23
+ "num_key_value_heads": 10,
24
+ "original_max_position_embeddings": 4096,
25
+ "pad_token_id": 32000,
26
+ "resid_pdrop": 0.0,
27
+ "rms_norm_eps": 1e-05,
28
+ "rope_scaling": null,
29
+ "rope_theta": 10000.0,
30
+ "sliding_window": 2047,
31
+ "tie_word_embeddings": false,
32
+ "transformers_version": "4.42.4",
33
+ "use_cache": true,
34
+ "vocab_size": 32064
35
+ }
configuration_phi3.py ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ Phi-3 model configuration"""
17
+
18
+
19
+ from transformers.configuration_utils import PretrainedConfig
20
+ from transformers.utils import logging
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ PHI3_PRETRAINED_CONFIG_ARCHIVE_MAP = {
26
+ "microsoft/Phi-3-mini-4k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct/resolve/main/config.json",
27
+ "microsoft/Phi-3-mini-128k-instruct": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/config.json",
28
+ }
29
+
30
+
31
+ class Phi3Config(PretrainedConfig):
32
+ r"""
33
+ This is the configuration class to store the configuration of a [`Phi3Model`]. It is used to instantiate a Phi-3
34
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
35
+ defaults will yield a similar configuration to that of the
36
+ [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct).
37
+
38
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
39
+ documentation from [`PretrainedConfig`] for more information.
40
+
41
+ Args:
42
+ vocab_size (`int`, *optional*, defaults to 32064):
43
+ Vocabulary size of the Phi-3 model. Defines the number of different tokens that can be represented by the
44
+ `inputs_ids` passed when calling [`Phi3Model`].
45
+ hidden_size (`int`, *optional*, defaults to 3072):
46
+ Dimension of the hidden representations.
47
+ intermediate_size (`int`, *optional*, defaults to 8192):
48
+ Dimension of the MLP representations.
49
+ num_hidden_layers (`int`, *optional*, defaults to 32):
50
+ Number of hidden layers in the Transformer decoder.
51
+ num_attention_heads (`int`, *optional*, defaults to 32):
52
+ Number of attention heads for each attention layer in the Transformer decoder.
53
+ num_key_value_heads (`int`, *optional*):
54
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
+ by meanpooling all the original heads within that group. For more details checkout [this
59
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
60
+ `num_attention_heads`.
61
+ resid_pdrop (`float`, *optional*, defaults to 0.0):
62
+ Dropout probability for mlp outputs.
63
+ embd_pdrop (`int`, *optional*, defaults to 0.0):
64
+ The dropout ratio for the embeddings.
65
+ attention_dropout (`float`, *optional*, defaults to 0.0):
66
+ The dropout ratio after computing the attention scores.
67
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
68
+ The non-linear activation function (function or string) in the decoder.
69
+ max_position_embeddings (`int`, *optional*, defaults to 4096):
70
+ The maximum sequence length that this model might ever be used with.
71
+ original_max_position_embeddings (`int`, *optional*, defaults to 4096):
72
+ The maximum sequence length that this model was trained with. This is used to determine the size of the
73
+ original RoPE embeddings when using long scaling.
74
+ initializer_range (`float`, *optional*, defaults to 0.02):
75
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
76
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
77
+ The epsilon value used for the RMSNorm.
78
+ use_cache (`bool`, *optional*, defaults to `True`):
79
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
80
+ relevant if `config.is_decoder=True`. Whether to tie weight embeddings or not.
81
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
82
+ Whether to tie weight embeddings
83
+ rope_theta (`float`, *optional*, defaults to 10000.0):
84
+ The base period of the RoPE embeddings.
85
+ rope_scaling (`dict`, *optional*):
86
+ The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
87
+ contain the following keys: `type`, `short_factor` and `long_factor`. The `type` must be either `su` or `yarn` and
88
+ the `short_factor` and `long_factor` must be lists of numbers with the same length as the hidden size
89
+ divided by the number of attention heads divided by 2.
90
+ bos_token_id (`int`, *optional*, defaults to 1):
91
+ The id of the "beginning-of-sequence" token.
92
+ eos_token_id (`int`, *optional*, defaults to 32000):
93
+ The id of the "end-of-sequence" token.
94
+ pad_token_id (`int`, *optional*, defaults to 32000):
95
+ The id of the padding token.
96
+ sliding_window (`int`, *optional*):
97
+ Sliding window attention window size. If `None`, no sliding window is applied.
98
+
99
+ Example:
100
+
101
+ ```python
102
+ >>> from transformers import Phi3Model, Phi3Config
103
+
104
+ >>> # Initializing a Phi-3 style configuration
105
+ >>> configuration = Phi3Config.from_pretrained("microsoft/Phi-3-mini-4k-instruct")
106
+
107
+ >>> # Initializing a model from the configuration
108
+ >>> model = Phi3Model(configuration)
109
+
110
+ >>> # Accessing the model configuration
111
+ >>> configuration = model.config
112
+ ```"""
113
+
114
+ model_type = "phi3"
115
+ keys_to_ignore_at_inference = ["past_key_values"]
116
+
117
+ def __init__(
118
+ self,
119
+ vocab_size=32064,
120
+ hidden_size=3072,
121
+ intermediate_size=8192,
122
+ num_hidden_layers=32,
123
+ num_attention_heads=32,
124
+ num_key_value_heads=None,
125
+ resid_pdrop=0.0,
126
+ embd_pdrop=0.0,
127
+ attention_dropout=0.0,
128
+ hidden_act="silu",
129
+ max_position_embeddings=4096,
130
+ original_max_position_embeddings=4096,
131
+ initializer_range=0.02,
132
+ rms_norm_eps=1e-5,
133
+ use_cache=True,
134
+ tie_word_embeddings=False,
135
+ rope_theta=10000.0,
136
+ rope_scaling=None,
137
+ bos_token_id=1,
138
+ eos_token_id=32000,
139
+ pad_token_id=32000,
140
+ sliding_window=None,
141
+ **kwargs,
142
+ ):
143
+ self.vocab_size = vocab_size
144
+ self.hidden_size = hidden_size
145
+ self.intermediate_size = intermediate_size
146
+ self.num_hidden_layers = num_hidden_layers
147
+ self.num_attention_heads = num_attention_heads
148
+
149
+ if num_key_value_heads is None:
150
+ num_key_value_heads = num_attention_heads
151
+
152
+ self.num_key_value_heads = num_key_value_heads
153
+ self.resid_pdrop = resid_pdrop
154
+ self.embd_pdrop = embd_pdrop
155
+ self.attention_dropout = attention_dropout
156
+ self.hidden_act = hidden_act
157
+ self.max_position_embeddings = max_position_embeddings
158
+ self.original_max_position_embeddings = original_max_position_embeddings
159
+ self.initializer_range = initializer_range
160
+ self.rms_norm_eps = rms_norm_eps
161
+ self.use_cache = use_cache
162
+ self.rope_theta = rope_theta
163
+ self.rope_scaling = rope_scaling
164
+ self._rope_scaling_validation()
165
+ self.sliding_window = sliding_window
166
+
167
+ super().__init__(
168
+ bos_token_id=bos_token_id,
169
+ eos_token_id=eos_token_id,
170
+ pad_token_id=pad_token_id,
171
+ tie_word_embeddings=tie_word_embeddings,
172
+ **kwargs,
173
+ )
174
+
175
+ def _rope_scaling_validation(self):
176
+ """
177
+ Validate the `rope_scaling` configuration.
178
+ """
179
+ if self.rope_scaling is None:
180
+ return
181
+
182
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 3:
183
+ raise ValueError(
184
+ "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor` and `long_factor`, "
185
+ f"got {self.rope_scaling}"
186
+ )
187
+ rope_scaling_type = self.rope_scaling.get("type", None)
188
+ rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
189
+ rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
190
+ if rope_scaling_type is None or rope_scaling_type not in ["su", "yarn"]:
191
+ raise ValueError(f"`rope_scaling`'s type field must be one of ['su', 'yarn'], got {rope_scaling_type}")
192
+ if not (
193
+ isinstance(rope_scaling_short_factor, list)
194
+ and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
195
+ ):
196
+ raise ValueError(
197
+ f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
198
+ )
199
+ if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
200
+ raise ValueError(
201
+ f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
202
+ )
203
+ if not (
204
+ isinstance(rope_scaling_long_factor, list)
205
+ and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
206
+ ):
207
+ raise ValueError(
208
+ f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
209
+ )
210
+ if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
211
+ raise ValueError(
212
+ f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
213
+ )
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": [
5
+ 32000,
6
+ 32001,
7
+ 32007
8
+ ],
9
+ "pad_token_id": 32000,
10
+ "transformers_version": "4.42.4"
11
+ }
openvino_detokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34f54bcfdecf199ed7333d7748c8e357c9d98b26c0c5800c7e0809e48edd74d3
3
+ size 499991
openvino_detokenizer.xml ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="detokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="Parameter_366148" type="Parameter" version="opset1">
5
+ <data shape="?,?" element_type="i64" />
6
+ <output>
7
+ <port id="0" precision="I64" names="Parameter_366148">
8
+ <dim>-1</dim>
9
+ <dim>-1</dim>
10
+ </port>
11
+ </output>
12
+ </layer>
13
+ <layer id="1" name="Constant_366128" type="Const" version="opset1">
14
+ <data element_type="u8" shape="499991" offset="0" size="499991" />
15
+ <output>
16
+ <port id="0" precision="U8">
17
+ <dim>499991</dim>
18
+ </port>
19
+ </output>
20
+ </layer>
21
+ <layer id="2" name="Convert_366158" type="Convert" version="opset1">
22
+ <data destination_type="i32" />
23
+ <input>
24
+ <port id="0" precision="I64">
25
+ <dim>-1</dim>
26
+ <dim>-1</dim>
27
+ </port>
28
+ </input>
29
+ <output>
30
+ <port id="1" precision="I32">
31
+ <dim>-1</dim>
32
+ <dim>-1</dim>
33
+ </port>
34
+ </output>
35
+ </layer>
36
+ <layer id="3" name="SentencepieceDetokenizer_366149" type="SentencepieceDetokenizer" version="extension">
37
+ <input>
38
+ <port id="0" precision="U8">
39
+ <dim>499991</dim>
40
+ </port>
41
+ <port id="1" precision="I32">
42
+ <dim>-1</dim>
43
+ <dim>-1</dim>
44
+ </port>
45
+ </input>
46
+ <output>
47
+ <port id="2" precision="I32">
48
+ <dim>-1</dim>
49
+ </port>
50
+ <port id="3" precision="I32">
51
+ <dim>-1</dim>
52
+ </port>
53
+ <port id="4" precision="U8">
54
+ <dim>-1</dim>
55
+ </port>
56
+ </output>
57
+ </layer>
58
+ <layer id="4" name="StringTensorPack_366150" type="StringTensorPack" version="extension">
59
+ <data mode="begins_ends" />
60
+ <input>
61
+ <port id="0" precision="I32">
62
+ <dim>-1</dim>
63
+ </port>
64
+ <port id="1" precision="I32">
65
+ <dim>-1</dim>
66
+ </port>
67
+ <port id="2" precision="U8">
68
+ <dim>-1</dim>
69
+ </port>
70
+ </input>
71
+ <output>
72
+ <port id="3" precision="STRING" names="string_output">
73
+ <dim>-1</dim>
74
+ </port>
75
+ </output>
76
+ </layer>
77
+ <layer id="5" name="Result_366151" type="Result" version="opset1">
78
+ <input>
79
+ <port id="0" precision="STRING">
80
+ <dim>-1</dim>
81
+ </port>
82
+ </input>
83
+ </layer>
84
+ </layers>
85
+ <edges>
86
+ <edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
87
+ <edge from-layer="1" from-port="0" to-layer="3" to-port="0" />
88
+ <edge from-layer="2" from-port="1" to-layer="3" to-port="1" />
89
+ <edge from-layer="3" from-port="2" to-layer="4" to-port="0" />
90
+ <edge from-layer="3" from-port="3" to-layer="4" to-port="1" />
91
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="2" />
92
+ <edge from-layer="4" from-port="3" to-layer="5" to-port="0" />
93
+ </edges>
94
+ <rt_info>
95
+ <eos_token_id value="32000" />
96
+ </rt_info>
97
+ </net>
openvino_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b362596e8006a208319ebace096fde5f022e5a645eadb5188606c75e25ab06a
3
+ size 7412171424
openvino_model.xml ADDED
The diff for this file is too large to render. See raw diff
 
openvino_tokenizer.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46097e0534935f1aec4cbac2c90e565ec51a8513fcd53b841231849403e5e122
3
+ size 499981
openvino_tokenizer.xml ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <?xml version="1.0"?>
2
+ <net name="tokenizer" version="11">
3
+ <layers>
4
+ <layer id="0" name="string_input" type="Parameter" version="opset1">
5
+ <data shape="?" element_type="string" />
6
+ <output>
7
+ <port id="0" precision="STRING" names="string_input">
8
+ <dim>-1</dim>
9
+ </port>
10
+ </output>
11
+ </layer>
12
+ <layer id="1" name="Constant_366134" type="Const" version="opset1">
13
+ <data element_type="i32" shape="" offset="0" size="4" />
14
+ <output>
15
+ <port id="0" precision="I32" />
16
+ </output>
17
+ </layer>
18
+ <layer id="2" name="Constant_366127" type="Const" version="opset1">
19
+ <data element_type="u8" shape="499969" offset="4" size="499969" />
20
+ <output>
21
+ <port id="0" precision="U8">
22
+ <dim>499969</dim>
23
+ </port>
24
+ </output>
25
+ </layer>
26
+ <layer id="3" name="SentencepieceTokenizer_366130" type="SentencepieceTokenizer" version="extension">
27
+ <data nbest_size="0" alpha="0" add_bos="false" add_eos="false" reverse="false" />
28
+ <input>
29
+ <port id="0" precision="U8">
30
+ <dim>499969</dim>
31
+ </port>
32
+ <port id="1" precision="STRING">
33
+ <dim>-1</dim>
34
+ </port>
35
+ </input>
36
+ <output>
37
+ <port id="2" precision="I64">
38
+ <dim>-1</dim>
39
+ <dim>2</dim>
40
+ </port>
41
+ <port id="3" precision="I32">
42
+ <dim>-1</dim>
43
+ </port>
44
+ <port id="4" precision="I64">
45
+ <dim>2</dim>
46
+ </port>
47
+ </output>
48
+ </layer>
49
+ <layer id="4" name="Broadcast_366135" type="Broadcast" version="opset3">
50
+ <data mode="numpy" />
51
+ <input>
52
+ <port id="0" precision="I32" />
53
+ <port id="1" precision="I64">
54
+ <dim>2</dim>
55
+ </port>
56
+ </input>
57
+ <output>
58
+ <port id="2" precision="I32">
59
+ <dim>-1</dim>
60
+ <dim>-1</dim>
61
+ </port>
62
+ </output>
63
+ </layer>
64
+ <layer id="5" name="Constant_366136" type="Const" version="opset1">
65
+ <data element_type="i32" shape="" offset="499973" size="4" />
66
+ <output>
67
+ <port id="0" precision="I32" />
68
+ </output>
69
+ </layer>
70
+ <layer id="6" name="ShapeOf_366137" type="ShapeOf" version="opset3">
71
+ <data output_type="i64" />
72
+ <input>
73
+ <port id="0" precision="I32">
74
+ <dim>-1</dim>
75
+ </port>
76
+ </input>
77
+ <output>
78
+ <port id="1" precision="I64">
79
+ <dim>1</dim>
80
+ </port>
81
+ </output>
82
+ </layer>
83
+ <layer id="7" name="Broadcast_366138" type="Broadcast" version="opset3">
84
+ <data mode="numpy" />
85
+ <input>
86
+ <port id="0" precision="I32" />
87
+ <port id="1" precision="I64">
88
+ <dim>1</dim>
89
+ </port>
90
+ </input>
91
+ <output>
92
+ <port id="2" precision="I32">
93
+ <dim>-1</dim>
94
+ </port>
95
+ </output>
96
+ </layer>
97
+ <layer id="8" name="ScatterNDUpdate_366142" type="ScatterNDUpdate" version="opset4">
98
+ <input>
99
+ <port id="0" precision="I32">
100
+ <dim>-1</dim>
101
+ <dim>-1</dim>
102
+ </port>
103
+ <port id="1" precision="I64">
104
+ <dim>-1</dim>
105
+ <dim>2</dim>
106
+ </port>
107
+ <port id="2" precision="I32">
108
+ <dim>-1</dim>
109
+ </port>
110
+ </input>
111
+ <output>
112
+ <port id="3" precision="I32">
113
+ <dim>-1</dim>
114
+ <dim>-1</dim>
115
+ </port>
116
+ </output>
117
+ </layer>
118
+ <layer id="9" name="ScatterNDUpdate_366142" type="Convert" version="opset1">
119
+ <data destination_type="i64" />
120
+ <input>
121
+ <port id="0" precision="I32">
122
+ <dim>-1</dim>
123
+ <dim>-1</dim>
124
+ </port>
125
+ </input>
126
+ <output>
127
+ <port id="1" precision="I64" names="attention_mask">
128
+ <dim>-1</dim>
129
+ <dim>-1</dim>
130
+ </port>
131
+ </output>
132
+ </layer>
133
+ <layer id="11" name="Constant_366131" type="Const" version="opset1">
134
+ <data element_type="i32" shape="" offset="499977" size="4" />
135
+ <output>
136
+ <port id="0" precision="I32" />
137
+ </output>
138
+ </layer>
139
+ <layer id="12" name="Broadcast_366132" type="Broadcast" version="opset3">
140
+ <data mode="numpy" />
141
+ <input>
142
+ <port id="0" precision="I32" />
143
+ <port id="1" precision="I64">
144
+ <dim>2</dim>
145
+ </port>
146
+ </input>
147
+ <output>
148
+ <port id="2" precision="I32">
149
+ <dim>-1</dim>
150
+ <dim>-1</dim>
151
+ </port>
152
+ </output>
153
+ </layer>
154
+ <layer id="13" name="ScatterNDUpdate_366133" type="ScatterNDUpdate" version="opset4">
155
+ <input>
156
+ <port id="0" precision="I32">
157
+ <dim>-1</dim>
158
+ <dim>-1</dim>
159
+ </port>
160
+ <port id="1" precision="I64">
161
+ <dim>-1</dim>
162
+ <dim>2</dim>
163
+ </port>
164
+ <port id="2" precision="I32">
165
+ <dim>-1</dim>
166
+ </port>
167
+ </input>
168
+ <output>
169
+ <port id="3" precision="I32">
170
+ <dim>-1</dim>
171
+ <dim>-1</dim>
172
+ </port>
173
+ </output>
174
+ </layer>
175
+ <layer id="14" name="ScatterNDUpdate_366133" type="Convert" version="opset1">
176
+ <data destination_type="i64" />
177
+ <input>
178
+ <port id="0" precision="I32">
179
+ <dim>-1</dim>
180
+ <dim>-1</dim>
181
+ </port>
182
+ </input>
183
+ <output>
184
+ <port id="1" precision="I64" names="input_ids">
185
+ <dim>-1</dim>
186
+ <dim>-1</dim>
187
+ </port>
188
+ </output>
189
+ </layer>
190
+ <layer id="15" name="Result_366143" type="Result" version="opset1">
191
+ <input>
192
+ <port id="0" precision="I64">
193
+ <dim>-1</dim>
194
+ <dim>-1</dim>
195
+ </port>
196
+ </input>
197
+ </layer>
198
+ <layer id="10" name="Result_366144" type="Result" version="opset1">
199
+ <input>
200
+ <port id="0" precision="I64">
201
+ <dim>-1</dim>
202
+ <dim>-1</dim>
203
+ </port>
204
+ </input>
205
+ </layer>
206
+ </layers>
207
+ <edges>
208
+ <edge from-layer="0" from-port="0" to-layer="3" to-port="1" />
209
+ <edge from-layer="1" from-port="0" to-layer="4" to-port="0" />
210
+ <edge from-layer="2" from-port="0" to-layer="3" to-port="0" />
211
+ <edge from-layer="3" from-port="4" to-layer="4" to-port="1" />
212
+ <edge from-layer="3" from-port="3" to-layer="6" to-port="0" />
213
+ <edge from-layer="3" from-port="2" to-layer="8" to-port="1" />
214
+ <edge from-layer="3" from-port="3" to-layer="13" to-port="2" />
215
+ <edge from-layer="3" from-port="2" to-layer="13" to-port="1" />
216
+ <edge from-layer="3" from-port="4" to-layer="12" to-port="1" />
217
+ <edge from-layer="4" from-port="2" to-layer="8" to-port="0" />
218
+ <edge from-layer="5" from-port="0" to-layer="7" to-port="0" />
219
+ <edge from-layer="6" from-port="1" to-layer="7" to-port="1" />
220
+ <edge from-layer="7" from-port="2" to-layer="8" to-port="2" />
221
+ <edge from-layer="8" from-port="3" to-layer="9" to-port="0" />
222
+ <edge from-layer="9" from-port="1" to-layer="10" to-port="0" />
223
+ <edge from-layer="11" from-port="0" to-layer="12" to-port="0" />
224
+ <edge from-layer="12" from-port="2" to-layer="13" to-port="0" />
225
+ <edge from-layer="13" from-port="3" to-layer="14" to-port="0" />
226
+ <edge from-layer="14" from-port="1" to-layer="15" to-port="0" />
227
+ </edges>
228
+ <rt_info>
229
+ <eos_token_id value="32000" />
230
+ </rt_info>
231
+ </net>
special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|endoftext|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": true,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|endoftext|>",
123
+ "legacy": false,
124
+ "model_max_length": 4096,
125
+ "pad_token": "<|endoftext|>",
126
+ "padding_side": "left",
127
+ "sp_model_kwargs": {},
128
+ "tokenizer_class": "LlamaTokenizer",
129
+ "unk_token": "<unk>",
130
+ "use_default_system_prompt": false
131
+ }