--- license: cc-by-nc-4.0 language: - ro base_model: - mistralai/Mistral-7B-v0.1 datasets: - OpenLLM-Ro/ro_sft_alpaca - OpenLLM-Ro/ro_sft_alpaca_gpt4 - OpenLLM-Ro/ro_sft_dolly - OpenLLM-Ro/ro_sft_selfinstruct_gpt4 - OpenLLM-Ro/ro_sft_norobots - OpenLLM-Ro/ro_sft_orca - OpenLLM-Ro/ro_sft_camel model-index: - name: OpenLLM-Ro/RoMistral-7b-Instruct-2024-05-17 results: - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: Score type: Score value: 4.99 - task: type: text-generation dataset: name: RoCulturaBench type: RoCulturaBench metrics: - name: Score type: Score value: 3.38 - task: type: text-generation dataset: name: Romanian_Academic_Benchmarks type: Romanian_Academic_Benchmarks metrics: - name: Average accuracy type: accuracy value: 52.54 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: Average accuracy type: accuracy value: 50.41 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: Average accuracy type: accuracy value: 51.61 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: Average accuracy type: accuracy value: 66.48 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: Average accuracy type: accuracy value: 60.27 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: Average accuracy type: accuracy value: 34.19 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_truthfulqa type: OpenLLM-Ro/ro_truthfulqa metrics: - name: Average accuracy type: accuracy value: 52.30 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: Average macro-f1 type: macro-f1 value: 97.36 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: Average macro-f1 type: macro-f1 value: 67.55 - task: type: text-generation dataset: name: LaRoSeDa_binary_finetuned type: LaRoSeDa_binary_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 98.80 - task: type: text-generation dataset: name: LaRoSeDa_multiclass_finetuned type: LaRoSeDa_multiclass_finetuned metrics: - name: Average macro-f1 type: macro-f1 value: 88.28 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: Average bleu type: bleu value: 27.93 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: Average bleu type: bleu value: 13.21 - task: type: text-generation dataset: name: WMT_EN-RO_finetuned type: WMT_EN-RO_finetuned metrics: - name: Average bleu type: bleu value: 28.72 - task: type: text-generation dataset: name: WMT_RO-EN_finetuned type: WMT_RO-EN_finetuned metrics: - name: Average bleu type: bleu value: 40.86 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average exact_match type: exact_match value: 43.66 - task: type: text-generation dataset: name: XQuAD type: XQuAD metrics: - name: Average f1 type: f1 value: 63.70 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average exact_match type: exact_match value: 55.04 - task: type: text-generation dataset: name: XQuAD_finetuned type: XQuAD_finetuned metrics: - name: Average f1 type: f1 value: 72.31 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average spearman type: spearman value: 77.43 - task: type: text-generation dataset: name: STS type: STS metrics: - name: Average pearson type: pearson value: 78.43 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average spearman type: spearman value: 87.25 - task: type: text-generation dataset: name: STS_finetuned type: STS_finetuned metrics: - name: Average pearson type: pearson value: 87.79 - task: type: text-generation dataset: name: RoMT-Bench type: RoMT-Bench metrics: - name: First turn type: Score value: 5.46 - name: Second turn type: Score value: 4.53 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_arc_challenge type: OpenLLM-Ro/ro_arc_challenge metrics: - name: 0-shot type: accuracy value: 47.47 - name: 1-shot type: accuracy value: 48.59 - name: 3-shot type: accuracy value: 50.30 - name: 5-shot type: accuracy value: 51.33 - name: 10-shot type: accuracy value: 52.36 - name: 25-shot type: accuracy value: 52.44 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_mmlu type: OpenLLM-Ro/ro_mmlu metrics: - name: 0-shot type: accuracy value: 50.01 - name: 1-shot type: accuracy value: 50.18 - name: 3-shot type: accuracy value: 53.13 - name: 5-shot type: accuracy value: 53.12 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_winogrande type: OpenLLM-Ro/ro_winogrande metrics: - name: 0-shot type: accuracy value: 64.96 - name: 1-shot type: accuracy value: 67.09 - name: 3-shot type: accuracy value: 67.01 - name: 5-shot type: accuracy value: 66.85 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_hellaswag type: OpenLLM-Ro/ro_hellaswag metrics: - name: 0-shot type: accuracy value: 59.99 - name: 1-shot type: accuracy value: 59.48 - name: 3-shot type: accuracy value: 60.14 - name: 5-shot type: accuracy value: 60.61 - name: 10-shot type: accuracy value: 61.12 - task: type: text-generation dataset: name: OpenLLM-Ro/ro_gsm8k type: OpenLLM-Ro/ro_gsm8k metrics: - name: 1-shot type: accuracy value: 21.68 - name: 3-shot type: accuracy value: 38.21 - name: 5-shot type: accuracy value: 42.68 - task: type: text-generation dataset: name: LaRoSeDa_binary type: LaRoSeDa_binary metrics: - name: 0-shot type: macro-f1 value: 97.27 - name: 1-shot type: macro-f1 value: 96.37 - name: 3-shot type: macro-f1 value: 97.97 - name: 5-shot type: macro-f1 value: 97.83 - task: type: text-generation dataset: name: LaRoSeDa_multiclass type: LaRoSeDa_multiclass metrics: - name: 0-shot type: macro-f1 value: 63.95 - name: 1-shot type: macro-f1 value: 66.89 - name: 3-shot type: macro-f1 value: 68.16 - name: 5-shot type: macro-f1 value: 71.19 - task: type: text-generation dataset: name: WMT_EN-RO type: WMT_EN-RO metrics: - name: 0-shot type: bleu value: 24.87 - name: 1-shot type: bleu value: 28.30 - name: 3-shot type: bleu value: 29.26 - name: 5-shot type: bleu value: 29.27 - task: type: text-generation dataset: name: WMT_RO-EN type: WMT_RO-EN metrics: - name: 0-shot type: bleu value: 3.69 - name: 1-shot type: bleu value: 5.45 - name: 3-shot type: bleu value: 19.92 - name: 5-shot type: bleu value: 23.80 - task: type: text-generation dataset: name: XQuAD_EM type: XQuAD_EM metrics: - name: 0-shot type: exact_match value: 23.36 - name: 1-shot type: exact_match value: 47.98 - name: 3-shot type: exact_match value: 51.85 - name: 5-shot type: exact_match value: 51.43 - task: type: text-generation dataset: name: XQuAD_F1 type: XQuAD_F1 metrics: - name: 0-shot type: f1 value: 46.29 - name: 1-shot type: f1 value: 67.40 - name: 3-shot type: f1 value: 70.58 - name: 5-shot type: f1 value: 70.53 - task: type: text-generation dataset: name: STS_Spearman type: STS_Spearman metrics: - name: 1-shot type: spearman value: 77.91 - name: 3-shot type: spearman value: 77.73 - name: 5-shot type: spearman value: 76.65 - task: type: text-generation dataset: name: STS_Pearson type: STS_Pearson metrics: - name: 1-shot type: pearson value: 78.03 - name: 3-shot type: pearson value: 78.74 - name: 5-shot type: pearson value: 78.53 --- # Model Card for Model ID RoMistral is a family of pretrained and fine-tuned generative text models for Romanian. This is the repository for the **instruct 7B model**. Links to other models can be found at the bottom of this page. ## Model Details ### Model Description OpenLLM-Ro represents the first open-source effort to build a LLM specialized for Romanian. OpenLLM-Ro developed and publicly releases a collection of Romanian LLMs, both in the form of foundational model and instruct and chat variants. - **Developed by:** OpenLLM-Ro - **Language(s):** Romanian - **License:** cc-by-nc-4.0 - **Finetuned from model:** [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) - **Trained using:** [RoAlpaca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca), [RoAlpacaGPT4](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_alpaca_gpt4), [RoDolly](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_dolly), [RoSelfInstruct](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_selfinstruct_gpt4), [RoNoRobots](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_norobots), [RoOrca](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_orca), [RoCamel](https://huggingface.co/datasets/OpenLLM-Ro/ro_sft_camel) ### Model Sources - **Repository:** https://github.com/OpenLLM-Ro/LLaMA-Factory - **Paper:** https://arxiv.org/abs/2406.18266 ## Intended Use ### Intended Use Cases RoMistral is intented for research use in Romanian. Base models can be adapted for a variety of natural language tasks while instruction and chat tuned models are intended for assistant-like chat. ### Out-of-Scope Use Use in any manner that violates the license, any applicable laws or regluations, use in languages other than Romanian. ## How to Get Started with the Model Use the code below to get started with the model. ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-05-17") model = AutoModelForCausalLM.from_pretrained("OpenLLM-Ro/RoMistral-7b-Instruct-05-17") instruction = "Ce jocuri de societate pot juca cu prietenii mei?" chat = [ {"role": "user", "content": instruction}, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, system_message="") inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` ## Academic Benchmarks
Model | |||||||
Mistral-7B-Instruct-v0.2 | |||||||
RoMistral-7b-Instruct-2024-05-17 | |||||||
RoMistral-7b-Instruct-2024-10-09 | |||||||
RoMistral-7b-Instruct-DPO-2024-10-09 |
Model | (Macro F1) |
(Macro F1) |
(Macro F1) |
(Macro F1) |
(Bleu) |
(Bleu) |
(Bleu) |
(Bleu) |
Mistral-7B-Instruct-v0.2 | ||||||||
RoMistral-7b-Instruct-2024-05-17 | ||||||||
RoMistral-7b-Instruct-2024-10-09 | ||||||||
RoMistral-7b-Instruct-DPO-2024-10-09 |
Model | ||||||||
Mistral-7B-Instruct-v0.2 | ||||||||
RoMistral-7b-Instruct-2024-05-17 | ||||||||
RoMistral-7b-Instruct-2024-10-09 | ||||||||
RoMistral-7b-Instruct-DPO-2024-10-09 |
Model | ||||
Mistral-7B-Instruct-v0.2 | ||||
RoMistral-7b-Instruct-2024-05-17 | ||||
RoMistral-7b-Instruct-2024-10-09 | ||||
RoMistral-7b-Instruct-DPO-2024-10-09 |
Model | ||
Mistral-7B-Instruct-v0.2 | ||
RoMistral-7b-Instruct-2024-05-17 | ||
RoMistral-7b-Instruct-2024-10-09 | ||
RoMistral-7b-Instruct-DPO-2024-10-09 |