juliehunter commited on
Commit
9bfab89
·
verified ·
1 Parent(s): 38df652

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -50
README.md CHANGED
@@ -6,7 +6,7 @@ language:
6
  base_model: OpenLLM-France/Claire-7B-0.1
7
  ---
8
 
9
- # Model Card for Model ID
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
@@ -16,24 +16,25 @@ base_model: OpenLLM-France/Claire-7B-0.1
16
 
17
  ### Model Description
18
 
19
- This is the instruction-finetuned model based on ([OpenLLM-France/Claire-7B-EN-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-EN-0.1)), using the [Vigogne dataset](https://github.com/bofenghuang/vigogne).
20
  Note: This is not a chat model. The finetuning was done on instruction-following data, and the model should be used with the template as shown in "How to Get Started with the Model".
21
 
22
- - **Developed by:** OpenLLM-France
23
  - **Language(s) (NLP):** French
24
  - **License:** CC-BY-NC-SA 4.0
25
- - **Finetuned from model: [OpenLLM-France/Claire-7B-EN-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-EN-0.1)
26
 
27
  ### Model Sources
28
 
29
- - **Repository:** [OpenLLM-France/Claire-7B-EN-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-EN-0.1)
30
  - **Paper:** [Claire: Large Language Models for Spontaneous French Dialogue](https://aclanthology.org/2024.jeptalnrecital-taln.36/)
31
 
32
 
33
  ## Uses
34
 
35
- This instruction-finetuned model is designed for tasks requiring detailed responses to user instructions.
36
- It can be used for generating natural language responses, content creation, answering queries, and other instruction-based tasks.
 
37
 
38
 
39
  ## Bias, Risks, and Limitations
@@ -85,7 +86,7 @@ print(decoded_output[0])
85
 
86
  ### Training Data
87
 
88
- The model was finetuned on the [Vigogne dataset](https://github.com/bofenghuang/vigogne), which is a translation of the [Alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca).
89
 
90
  ### Training Procedure
91
 
@@ -104,45 +105,3 @@ lora_task_type: CAUSAL_LM
104
  num_train_epochs: 1
105
  ```
106
 
107
- ## Evaluation
108
-
109
- <!-- This section describes the evaluation protocols and provides the results. -->
110
-
111
-
112
-
113
- ### Results
114
-
115
-
116
-
117
- #### Summary
118
-
119
-
120
- ## Citation [optional]
121
-
122
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
123
-
124
- **BibTeX:**
125
-
126
- [More Information Needed]
127
-
128
- **APA:**
129
-
130
- [More Information Needed]
131
-
132
- ## Glossary [optional]
133
-
134
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
135
-
136
- [More Information Needed]
137
-
138
- ## More Information [optional]
139
-
140
- [More Information Needed]
141
-
142
- ## Model Card Authors [optional]
143
-
144
- [More Information Needed]
145
-
146
- ## Model Card Contact
147
-
148
- [More Information Needed]
 
6
  base_model: OpenLLM-France/Claire-7B-0.1
7
  ---
8
 
9
+ # Model Card for Claire-7B-FR-Instruct
10
 
11
  <!-- Provide a quick summary of what the model is/does. -->
12
 
 
16
 
17
  ### Model Description
18
 
19
+ This is the instruction-finetuned model based on [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1), using the [Vigogne dataset](https://github.com/bofenghuang/vigogne).
20
  Note: This is not a chat model. The finetuning was done on instruction-following data, and the model should be used with the template as shown in "How to Get Started with the Model".
21
 
22
+ - **Developed by:** LINAGORA with the support of OpenLLM-France
23
  - **Language(s) (NLP):** French
24
  - **License:** CC-BY-NC-SA 4.0
25
+ - **Finetuned from model: [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1)
26
 
27
  ### Model Sources
28
 
29
+ - **Repository:** [OpenLLM-France/Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-EN-0.1)
30
  - **Paper:** [Claire: Large Language Models for Spontaneous French Dialogue](https://aclanthology.org/2024.jeptalnrecital-taln.36/)
31
 
32
 
33
  ## Uses
34
 
35
+ The base model, [Claire-7B-0.1](https://huggingface.co/OpenLLM-France/Claire-7B-0.1), results from continuing the pretraining of [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) on French conversation transcripts and theater plays. The idea was to attune the base model to features of spontaneous conversation so that it could be more efficiently fine-tuned for downstream tasks requiring understanding of spoken conversation.
36
+
37
+ This instruction-finetuned model serves as a first level of fine-tuning for such tasks. It is designed to provide detailed responses to user instructions. It can be used for generating natural language responses, content creation, answering queries, and other instruction-based tasks.
38
 
39
 
40
  ## Bias, Risks, and Limitations
 
86
 
87
  ### Training Data
88
 
89
+ The model was finetuned on the [Vigogne dataset](https://github.com/bofenghuang/vigogne), which is a cleaned version of the [Alpaca dataset](https://huggingface.co/datasets/tatsu-lab/alpaca), translated by `gpt-3.5-turbo`.
90
 
91
  ### Training Procedure
92
 
 
105
  num_train_epochs: 1
106
  ```
107