import torch import torch.nn as nn from typing import Callable, Tuple def bipartite_soft_matching( metric: torch.Tensor, r: int, ) -> Tuple[Callable, Callable]: """ Applies ToMe with a balanced matching set (50%, 50%). Input size is [batch, tokens, channels]. r indicates the number of tokens to remove (max 50% of tokens). """ protected = 0 t = metric.shape[1] r = min(r, (t - protected) // 2) assert r > 0, r with torch.no_grad(): metric = metric / metric.norm(dim=-1, keepdim=True) a, b = metric[..., ::2, :], metric[..., 1::2, :] scores = a @ b.transpose(-1, -2) node_max, node_idx = scores.max(dim=-1) edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] unm_idx = edge_idx[..., r:, :] # Unmerged Tokens src_idx = edge_idx[..., :r, :] # Merged Tokens dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx) def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: src, dst = x[..., ::2, :], x[..., 1::2, :] n, t1, c = src.shape unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c)) src = src.gather(dim=-2, index=src_idx.expand(n, r, c)) dst = dst.scatter_add(-2, dst_idx.expand(n, r, c), src) # , reduce=mode) return torch.cat([unm, dst], dim=1) def unmerge(x: torch.Tensor) -> torch.Tensor: unm_len = unm_idx.shape[1] unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] n, _, c = unm.shape src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c)) out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype) out[..., 1::2, :] = dst out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm) out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src) return out return merge, unmerge def merge_wavg( merge: Callable, x: torch.Tensor, size: torch.Tensor = None ) -> Tuple[torch.Tensor, torch.Tensor]: """ Applies the merge function by taking a weighted average based on token size. Returns the merged tensor and the new token sizes. """ if size is None: size = torch.ones_like(x[..., 0, None]) x = merge(x * size, mode="sum") size = merge(size, mode="sum") x = x / size return x, size class ToMe16_mlp_hd64(nn.Module): def __init__(self, config, vision_cfg): super().__init__() self._config = config self.mm_hidden_size = config.mm_hidden_size self.hw = vision_cfg.image_size // vision_cfg.patch_size self.num_attention_heads = vision_cfg.num_attention_heads self.mlp = nn.Sequential(nn.Linear(config.mm_hidden_size, config.hidden_size), nn.GELU(), nn.Linear(config.hidden_size, config.hidden_size)) self.max_pos_hw = self.hw self.max_pos_num_frames = config.mm_pos_num_frames self.num_image_patches_per_side = 8 self.num_frame_patches_per_side = 4 def merge_tokens(self, x, target_num_token): r""" x = torch.randn(10, 2560, c) x = merge_tokens(x, r_merge_list=[1280]) """ size = None b, p, c = x.shape tmp_p = p r_merge_list = [] assert tmp_p > target_num_token, f"{tmp_p} should greater than {target_num_token}" while tmp_p != target_num_token: if tmp_p - target_num_token <= (tmp_p // 2): r_merge_list.append(tmp_p - target_num_token) break else: r_merge_list.append(tmp_p // 2) tmp_p = tmp_p - (tmp_p // 2) head = self.num_attention_heads dim = c // head for r in r_merge_list: metric = x.reshape(b, p, head, dim).mean(2) # [b, p, c//head] merge, _ = bipartite_soft_matching( metric, r ) x, size = merge_wavg(merge, x, size) _, p, _ = x.shape return x def forward(self, x, compress=False, local_num_frames=-1): # 单帧64 height = width = self.hw assert height * width == x.shape[1] if local_num_frames != -1 and local_num_frames != 1: assert compress is True if compress: if local_num_frames != -1: num_frames = local_num_frames x = x.reshape(x.shape[0] // local_num_frames, -1, x.shape[-1]) else: num_frames = x.shape[0] x = x.reshape(1, -1, x.shape[-1]) num_tome_tokens = 16 * num_frames else: num_tome_tokens = 64 x = self.merge_tokens(x, target_num_token=num_tome_tokens) x = self.mlp(x) return x @property def config(self): return {"mm_projector_type": "tome16_mlp_hd64"} def build_vision_projector(config, delay_load=False, **kwargs): projector_type = getattr(config, "mm_projector_type", "linear") if projector_type == 'tome16_mlp_hd64': return ToMe16_mlp_hd64(config, kwargs["vision_cfg"]) raise ValueError(f"Unknown projector type: {projector_type}")