from PIL import Image from io import BytesIO import base64 import math import ast import re import torch from transformers import StoppingCriteria from .constants import IMAGE_TOKEN_INDEX import random import os import io import av import cv2 import imageio from decord import VideoReader import numpy as np ######################## load video ######################## def get_index(num_frames, num_segments): seg_size = float(num_frames - 1) / num_segments start = int(seg_size / 2) offsets = np.array([ start + int(np.round(seg_size * idx)) for idx in range(num_segments) ]) return offsets def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float: """ Converts a present time with the given time base and start_pts offset to seconds. Returns: time_in_seconds (float): The corresponding time in seconds. https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64 """ if pts == math.inf: return math.inf return int(pts - start_pts) * time_base def get_pyav_video_duration(video_reader): video_stream = video_reader.streams.video[0] video_duration = pts_to_secs( video_stream.duration, video_stream.time_base, video_stream.start_time ) return float(video_duration) def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8): if min_num_frames > vlen: if sample == 'dynamic_fps1': min_num_frames = (vlen // local_num_frames) * local_num_frames else: min_num_frames = vlen if sample == 'dynamic_fps1': duration = float(vlen) / input_fps num_segments = int(duration // local_num_frames) if num_segments == 0: num_frames = local_num_frames else: num_frames = local_num_frames * num_segments if max_num_frames > 0: num_frames = min(num_frames, max_num_frames) sample = "middle" # NOTE # logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!") num_frames = max(min_num_frames, num_frames) # print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m") if sample in ["rand", "middle"]: # uniform sampling acc_samples = min(num_frames, vlen) # split the video into `acc_samples` intervals, and sample from each interval. intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) ranges = [] for idx, interv in enumerate(intervals[:-1]): ranges.append((interv, intervals[idx + 1] - 1)) if sample == 'rand': try: frame_indices = [random.choice(range(x[0], x[1])) for x in ranges] except: frame_indices = np.random.permutation(vlen)[:acc_samples] frame_indices.sort() frame_indices = list(frame_indices) elif fix_start is not None: frame_indices = [x[0] + fix_start for x in ranges] elif sample == 'middle': frame_indices = [(x[0] + x[1]) // 2 for x in ranges] else: raise NotImplementedError if len(frame_indices) < num_frames: # padded with last frame padded_frame_indices = [frame_indices[-1]] * num_frames padded_frame_indices[:len(frame_indices)] = frame_indices frame_indices = padded_frame_indices elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps output_fps = float(sample[3:]) duration = float(vlen) / input_fps delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta) frame_indices = np.around(frame_seconds * input_fps).astype(int) frame_indices = [e for e in frame_indices if e < vlen] if max_num_frames > 0 and len(frame_indices) > max_num_frames: frame_indices = frame_indices[:max_num_frames] # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames) else: raise ValueError(f"Not support sample type: {sample}") return frame_indices def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8): if clip is not None: raise NotImplementedError("av don't support clip!!!") if 's3://' in video_path: video_bytes = client.get(video_path) byteio = io.BytesIO(video_bytes) byteio.seek(0) reader = av.open(byteio) else: byteio = None reader = av.open(video_path) frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)] vlen = len(frames) duration = get_pyav_video_duration(reader) fps = vlen / float(duration) frame_indices = get_frame_indices( num_frames, vlen, sample=sample, fix_start=fix_start, input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames ) frames = np.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8 # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8 if byteio != None: byteio.close() reader.close() return frames, frame_indices, float(fps), duration def read_frames_gif( video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8 ): if clip is not None: raise NotImplementedError("Gif don't support clip!!!") if 's3://' in video_path: video_bytes = client.get(video_path) byteio = io.BytesIO(video_bytes) gif = imageio.get_reader(byteio) else: byteio = None gif = imageio.get_reader(video_path) vlen = len(gif) fps = 1. duration = vlen / fps frame_indices = get_frame_indices( num_frames, vlen, sample=sample, fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames, input_fps=fps ) frames = [] min_h = min_w = 100000 hw_set = set() for index, frame in enumerate(gif): # for index in frame_idxs: if index in frame_indices: frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) frame = frame.astype(np.uint8) # # (H x W x C) to (C x H x W) # frame = frame.permute(2, 0, 1) frames.append(frame) hw_set.add(frame.shape) if frame.shape[0] < min_h: min_h = frame.shape[0] if frame.shape[1] < min_w: min_w = frame.shape[1] # print(hw_set, min_h, min_w) if len(hw_set) > 1: frames = [i[:min_h, :min_w] for i in frames] frames = np.stack(frames) # .float() / 255 if byteio != None: byteio.close() return frames, frame_indices, float(fps), duration # for tgif def read_frames_decord( video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8 ): if video_path.endswith('.avi'): return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample, fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=local_num_frames) if 's3://' in video_path: video_bytes = client.get(video_path) if video_bytes is None or len(video_bytes) == 0: raise ValueError(f"Can't read byte from {video_path}!") byteio = io.BytesIO(video_bytes) video_reader = VideoReader(byteio, num_threads=1) else: byteio = None video_reader = VideoReader(video_path, num_threads=1) vlen = len(video_reader) fps = video_reader.get_avg_fps() duration = vlen / float(fps) if clip: start, end = clip start = max(0, start) end = min(duration - 0.1, end) duration = end - start vlen = int(duration * fps) start_index = int(start * fps) frame_indices = get_frame_indices( num_frames, vlen, sample=sample, fix_start=fix_start, input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames ) if clip: frame_indices = [f + start_index for f in frame_indices] # print(fps, frame_indices) frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), torch.uint8 # https://github.com/dmlc/decord/issues/208 video_reader.seek(0) if byteio != None: byteio.close() # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8 return frames, frame_indices, float(fps), duration def read_frames_img( video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8 ): def extract_frame_number(filename): # Extract the numeric part from the filename using regular expressions if filename.endswith('.jpg'): match = re.search(r'_(\d+).jpg$', filename) elif filename.endswith('.jpeg'): match = re.search(r'_(\d+).jpeg$', filename) elif filename.endswith('.png'): match = re.search(r'_(\d+).png$', filename) else: raise NotImplementedError(f"Wrong filename: {filename}") return int(match.group(1)) if match else -1 def sort_frames(frame_paths): # Extract filenames from each path and sort by their numeric part return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x))) # img_list=[] if "s3://" in video_path: img_list = sort_frames(client.list(video_path)) else: img_list = sort_frames(list(os.listdir(video_path))) if 'tvqa' in video_path.lower(): fps = 3.0 else: fps = 1.0 if clip is not None: start = float(clip[0]) end = float(clip[1]) start = max(0, start) end = min(len(img_list) / fps, end) vlen = (end - start) * fps else: vlen = len(img_list) duration = vlen / fps if min_num_frames > vlen: if sample == 'dynamic_fps1': min_num_frames = (vlen // local_num_frames) * local_num_frames else: min_num_frames = vlen if sample == 'dynamic_fps1': num_segments = int(duration // local_num_frames) if num_segments == 0: num_frames = local_num_frames else: num_frames = local_num_frames * num_segments num_frames = min(num_frames, max_num_frames) num_frames = max(min_num_frames, num_frames) num_frames = int(num_frames) if clip is not None: def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999): start_idx = max(1, round(start_sec * fps)) end_idx = min(round(end_sec * fps), max_frame) seg_size = float(end_idx - start_idx) / (num_segments - 1) offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)]) return offsets frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1) else: frame_indices = get_frame_indices( num_frames, vlen, sample=sample, fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames ) imgs = [] for idx in frame_indices: frame_fname = os.path.join(video_path, img_list[idx]) if "s3://" in video_path: img_bytes = client.get(frame_fname) else: with open(frame_fname, 'rb') as f: img_bytes = f.read() img_np = np.frombuffer(img_bytes, np.uint8) img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) imgs.append(img) frames = np.array(imgs, dtype=np.uint8) return frames, frame_indices, fps, duration VIDEO_READER_FUNCS = { 'av': read_frames_av, 'decord': read_frames_decord, 'gif': read_frames_gif, 'img': read_frames_img, 'frame': read_frames_img } def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict): if media_dict is None: media_dict = {'video_read_type': 'decord'} if type(video_path) != str: assert len(video_path) == 1, video_path video_path = video_path[0] if 'start' in media_dict: clip = [media_dict['start'], media_dict['end']] else: clip = None client = None frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8) sec = [str(round(f / fps, 1)) for f in frame_indices] msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. " return frames, msg ######################## load video ######################## def resize_and_center_crop(image, shortest_edge_length): # Calculate new dimensions and resize aspect_ratio = float(image.width) / float(image.height) if aspect_ratio > 1: new_width = int(shortest_edge_length * aspect_ratio) new_height = shortest_edge_length else: new_width = shortest_edge_length new_height = int(shortest_edge_length / aspect_ratio) resized_image = image.resize((new_width, new_height), Image.ANTIALIAS) # Calculate the position and perform the center crop left = (new_width - shortest_edge_length) / 2 top = (new_height - shortest_edge_length) / 2 right = (new_width + shortest_edge_length) / 2 bottom = (new_height + shortest_edge_length) / 2 cropped_image = resized_image.crop((left, top, right, bottom)) return cropped_image def auto_pad_images(image, grid_params): assert isinstance(image, Image.Image), "Input should be a Pillow Image" assert len(grid_params) > 0, "Grid parameters should not be empty" # Step 1: Calculate and find the closest aspect ratio input_width, input_height = image.size input_aspect_ratio = input_width / input_height candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params] closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0])) candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3] target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1)) resize_width, resize_height = target_resolution if input_width > input_height: resize_height = int(resize_width / input_aspect_ratio) else: resize_width = int(resize_height * input_aspect_ratio) resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS) # Step 5: Pad the resized image if necessary to match the target resolution pad_width = target_resolution[0] - resize_width pad_height = target_resolution[1] - resize_height padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0)) padded_image.paste(resized_image, (pad_width // 2, pad_height // 2)) return padded_image def extract_patches(image, patch_size, overlap_ratio): assert isinstance(image, Image.Image), "Input should be a Pillow Image" assert patch_size > 0, "Patch size should be greater than 0" assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1" W, H = image.size patches = [] stride = int(patch_size * (1 - overlap_ratio)) num_patches_y = (H - patch_size) // stride + 1 num_patches_x = (W - patch_size) // stride + 1 y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2 x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2 for y in range(y_start, y_start + num_patches_y * stride, stride): for x in range(x_start, x_start + num_patches_x * stride, stride): patch = image.crop((x, y, x + patch_size, y + patch_size)) patches.append(patch) return patches def process_highres_image_crop_split(image, data_args, processor=None): crop_resolution = data_args.image_crop_resolution split_resolution = data_args.image_split_resolution if processor is None: processor = data_args.image_processor image_crop = resize_and_center_crop(image, crop_resolution) image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0) image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) def process_highres_image(image, processor, grid_pinpoints): grid_params = [int(x) for x in grid_pinpoints.split(",")] width_height = max(image.size) fit_grid_params = [x for x in grid_params if x >= width_height] if len(fit_grid_params) == 0: select_size = max(grid_params) else: select_size = min(fit_grid_params) # FIXME: always select the 448 select_size = max(grid_params) image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) # FIXME: this seems to be a bug that it always resizes instead of padding image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"])) image_padded = image_padded.resize((select_size, select_size)) image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0) image_patches = [image_original_resize] + image_patches image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] return torch.stack(image_patches, dim=0) def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size): """ Selects the best resolution from a list of possible resolutions based on the original size. Args: original_size (tuple): The original size of the image in the format (width, height). possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. Returns: tuple: The best fit resolution in the format (width, height). """ original_width, original_height = original_size best_fit = None max_effective_resolution = 0 min_wasted_resolution = float("inf") for width, height in possible_resolutions: if max_resolutions != None and (width * height != patch_size * patch_size): if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global continue # Calculate the downscaled size to keep the aspect ratio scale = min(width / original_width, height / original_height) downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) # Calculate effective and wasted resolutions effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) wasted_resolution = (width * height) - effective_resolution if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): max_effective_resolution = effective_resolution min_wasted_resolution = wasted_resolution best_fit = (width, height) # print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}") assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}" return best_fit def resize_and_pad_image(image, target_resolution): """ Resize and pad an image to a target resolution while maintaining aspect ratio. Args: image (PIL.Image.Image): The input image. target_resolution (tuple): The target resolution (width, height) of the image. Returns: PIL.Image.Image: The resized and padded image. """ original_width, original_height = image.size target_width, target_height = target_resolution # Determine which dimension (width or height) to fill scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: # Width will be filled completely new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: # Height will be filled completely new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) # Resize the image resized_image = image.resize((new_width, new_height)) # Create a new image with the target size and paste the resized image onto it new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 new_image.paste(resized_image, (paste_x, paste_y)) return new_image def divide_to_patches(image, patch_size): """ Divides an image into patches of a specified size. Args: image (PIL.Image.Image): The input image. patch_size (int): The size of each patch. Returns: list: A list of PIL.Image.Image objects representing the patches. """ patches = [] width, height = image.size for i in range(0, height, patch_size): for j in range(0, width, patch_size): box = (j, i, j + patch_size, i + patch_size) patch = image.crop(box) patches.append(patch) return patches def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (tuple): The size of the input image in the format (width, height). grid_pinpoints (str): A string representation of a list of possible resolutions. patch_size (int): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size) # print("get width/patch size", width, patch_size, flush=True) return width // patch_size, height // patch_size def process_anyres_image(image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ raise NotImplementedError # Convert grid_pinpoints from string to list if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: try: patch_size = processor.size[0] except Exception as e: patch_size = processor.size["shortest_edge"] assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions) image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image_padded, processor.crop_size["height"]) # FIXME: this seems to be a bug that it resizes instead of pad. # but to keep it consistent with previous, i will keep it as it is # TODO: uncomment below to ablate with the padding if isinstance(processor.size, dict): shortest_edge = processor.size["shortest_edge"] else: shortest_edge = min(processor.size) image_original_resize = image.resize((shortest_edge, shortest_edge)) # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) image_patches = [image_original_resize] + patches image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] # print("image.size", image.size, "len(image_patches):", len(image_patches), "patch_size:", image_patches[0].shape) return torch.stack(image_patches, dim=0) def process_anyres_image_nopad(image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ # Convert grid_pinpoints from string to list try: patch_size = processor.size[0] except Exception as e: patch_size = processor.size["shortest_edge"] assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: # Use regex to extract the range from the input string matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) range_start = tuple(map(int, matches[0])) range_end = tuple(map(int, matches[-1])) # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1]) grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] # Multiply all elements by patch_size grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制 # image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image.resize(best_resolution), patch_size) # FIXME: this seems to be a bug that it resizes instead of pad. # but to keep it consistent with previous, i will keep it as it is # TODO: uncomment below to ablate with the padding if isinstance(processor.size, dict): shortest_edge = processor.size["shortest_edge"] else: shortest_edge = min(processor.size) image_original_resize = image.resize((shortest_edge, shortest_edge)) # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge'])) image_patches = [image_original_resize] + patches image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] # raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}") return torch.stack(image_patches, dim=0) def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result def process_images(images, image_processor, model_cfg): image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) new_images = [] if image_aspect_ratio == "highres": raise NotImplementedError for image in images: image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints) new_images.append(image) elif "anyres" in image_aspect_ratio: for image in images: if "nopad" in image_aspect_ratio: image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints) else: image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) new_images.append(image) elif image_aspect_ratio == "crop_split": raise NotImplementedError for image in images: image = process_highres_image_crop_split(image, model_cfg, image_processor) new_images.append(image) elif image_aspect_ratio == "pad": for image in images: image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean)) image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0] new_images.append(image) else: return image_processor.preprocess(images, return_tensors="pt")["pixel_values"] if all(x.shape == new_images[0].shape for x in new_images): new_images = torch.stack(new_images, dim=0) return new_images def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("")] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == "pt": return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f"Unsupported tensor type: {return_tensors}") return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith("checkpoint-"): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: cur_keyword_ids = cur_keyword_ids[1:] self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO offset = min(output_ids.shape[1] - self.start_len, 3) self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] for keyword_id in self.keyword_ids: if output_ids[0, -keyword_id.shape[0] :] == keyword_id: return True outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False