|
from PIL import Image |
|
from io import BytesIO |
|
import base64 |
|
import math |
|
import ast |
|
import re |
|
import torch |
|
from transformers import StoppingCriteria |
|
from .constants import IMAGE_TOKEN_INDEX |
|
import random |
|
import os |
|
import io |
|
import av |
|
import cv2 |
|
import imageio |
|
from decord import VideoReader |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
def get_index(num_frames, num_segments): |
|
seg_size = float(num_frames - 1) / num_segments |
|
start = int(seg_size / 2) |
|
offsets = np.array([ |
|
start + int(np.round(seg_size * idx)) for idx in range(num_segments) |
|
]) |
|
return offsets |
|
|
|
|
|
def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float: |
|
""" |
|
Converts a present time with the given time base and start_pts offset to seconds. |
|
|
|
Returns: |
|
time_in_seconds (float): The corresponding time in seconds. |
|
|
|
https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64 |
|
""" |
|
if pts == math.inf: |
|
return math.inf |
|
|
|
return int(pts - start_pts) * time_base |
|
|
|
|
|
def get_pyav_video_duration(video_reader): |
|
video_stream = video_reader.streams.video[0] |
|
video_duration = pts_to_secs( |
|
video_stream.duration, |
|
video_stream.time_base, |
|
video_stream.start_time |
|
) |
|
return float(video_duration) |
|
|
|
|
|
|
|
def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8): |
|
|
|
if min_num_frames > vlen: |
|
if sample == 'dynamic_fps1': |
|
min_num_frames = (vlen // local_num_frames) * local_num_frames |
|
else: |
|
min_num_frames = vlen |
|
|
|
|
|
if sample == 'dynamic_fps1': |
|
|
|
duration = float(vlen) / input_fps |
|
num_segments = int(duration // local_num_frames) |
|
if num_segments == 0: |
|
num_frames = local_num_frames |
|
else: |
|
num_frames = local_num_frames * num_segments |
|
|
|
if max_num_frames > 0: |
|
num_frames = min(num_frames, max_num_frames) |
|
sample = "middle" |
|
|
|
|
|
|
|
num_frames = max(min_num_frames, num_frames) |
|
|
|
|
|
|
|
if sample in ["rand", "middle"]: |
|
acc_samples = min(num_frames, vlen) |
|
|
|
intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int) |
|
ranges = [] |
|
for idx, interv in enumerate(intervals[:-1]): |
|
ranges.append((interv, intervals[idx + 1] - 1)) |
|
if sample == 'rand': |
|
try: |
|
frame_indices = [random.choice(range(x[0], x[1])) for x in ranges] |
|
except: |
|
frame_indices = np.random.permutation(vlen)[:acc_samples] |
|
frame_indices.sort() |
|
frame_indices = list(frame_indices) |
|
elif fix_start is not None: |
|
frame_indices = [x[0] + fix_start for x in ranges] |
|
elif sample == 'middle': |
|
frame_indices = [(x[0] + x[1]) // 2 for x in ranges] |
|
else: |
|
raise NotImplementedError |
|
|
|
if len(frame_indices) < num_frames: |
|
padded_frame_indices = [frame_indices[-1]] * num_frames |
|
padded_frame_indices[:len(frame_indices)] = frame_indices |
|
frame_indices = padded_frame_indices |
|
elif "fps" in sample: |
|
output_fps = float(sample[3:]) |
|
duration = float(vlen) / input_fps |
|
delta = 1 / output_fps |
|
frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta) |
|
frame_indices = np.around(frame_seconds * input_fps).astype(int) |
|
frame_indices = [e for e in frame_indices if e < vlen] |
|
if max_num_frames > 0 and len(frame_indices) > max_num_frames: |
|
frame_indices = frame_indices[:max_num_frames] |
|
|
|
else: |
|
raise ValueError(f"Not support sample type: {sample}") |
|
|
|
|
|
return frame_indices |
|
|
|
|
|
def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8): |
|
if clip is not None: |
|
raise NotImplementedError("av don't support clip!!!") |
|
if 's3://' in video_path: |
|
video_bytes = client.get(video_path) |
|
byteio = io.BytesIO(video_bytes) |
|
byteio.seek(0) |
|
reader = av.open(byteio) |
|
else: |
|
byteio = None |
|
reader = av.open(video_path) |
|
frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)] |
|
vlen = len(frames) |
|
duration = get_pyav_video_duration(reader) |
|
fps = vlen / float(duration) |
|
frame_indices = get_frame_indices( |
|
num_frames, vlen, sample=sample, fix_start=fix_start, |
|
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames |
|
) |
|
frames = np.stack([frames[idx] for idx in frame_indices]) |
|
|
|
if byteio != None: |
|
byteio.close() |
|
|
|
reader.close() |
|
|
|
return frames, frame_indices, float(fps), duration |
|
|
|
|
|
def read_frames_gif( |
|
video_path, num_frames, sample='rand', fix_start=None, |
|
min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8 |
|
): |
|
if clip is not None: |
|
raise NotImplementedError("Gif don't support clip!!!") |
|
if 's3://' in video_path: |
|
video_bytes = client.get(video_path) |
|
byteio = io.BytesIO(video_bytes) |
|
gif = imageio.get_reader(byteio) |
|
else: |
|
byteio = None |
|
gif = imageio.get_reader(video_path) |
|
vlen = len(gif) |
|
fps = 1. |
|
duration = vlen / fps |
|
frame_indices = get_frame_indices( |
|
num_frames, vlen, sample=sample, fix_start=fix_start, |
|
min_num_frames=min_num_frames, |
|
max_num_frames=max_num_frames, local_num_frames=local_num_frames, |
|
input_fps=fps |
|
) |
|
frames = [] |
|
|
|
min_h = min_w = 100000 |
|
hw_set = set() |
|
for index, frame in enumerate(gif): |
|
|
|
if index in frame_indices: |
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB) |
|
frame = frame.astype(np.uint8) |
|
|
|
|
|
frames.append(frame) |
|
hw_set.add(frame.shape) |
|
if frame.shape[0] < min_h: |
|
min_h = frame.shape[0] |
|
if frame.shape[1] < min_w: |
|
min_w = frame.shape[1] |
|
|
|
if len(hw_set) > 1: |
|
frames = [i[:min_h, :min_w] for i in frames] |
|
|
|
frames = np.stack(frames) |
|
|
|
if byteio != None: |
|
byteio.close() |
|
|
|
return frames, frame_indices, float(fps), duration |
|
|
|
|
|
|
|
def read_frames_decord( |
|
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1, |
|
max_num_frames=-1, client=None, clip=None, local_num_frames=8 |
|
): |
|
|
|
if video_path.endswith('.avi'): |
|
return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample, |
|
fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames, |
|
client=client, clip=clip, local_num_frames=local_num_frames) |
|
if 's3://' in video_path: |
|
video_bytes = client.get(video_path) |
|
if video_bytes is None or len(video_bytes) == 0: |
|
raise ValueError(f"Can't read byte from {video_path}!") |
|
byteio = io.BytesIO(video_bytes) |
|
video_reader = VideoReader(byteio, num_threads=1) |
|
else: |
|
byteio = None |
|
video_reader = VideoReader(video_path, num_threads=1) |
|
vlen = len(video_reader) |
|
fps = video_reader.get_avg_fps() |
|
duration = vlen / float(fps) |
|
|
|
|
|
if clip: |
|
start, end = clip |
|
start = max(0, start) |
|
end = min(duration - 0.1, end) |
|
duration = end - start |
|
vlen = int(duration * fps) |
|
start_index = int(start * fps) |
|
|
|
frame_indices = get_frame_indices( |
|
num_frames, vlen, sample=sample, fix_start=fix_start, |
|
input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames |
|
) |
|
if clip: |
|
frame_indices = [f + start_index for f in frame_indices] |
|
|
|
|
|
frames = video_reader.get_batch(frame_indices).asnumpy() |
|
|
|
video_reader.seek(0) |
|
|
|
if byteio != None: |
|
byteio.close() |
|
|
|
return frames, frame_indices, float(fps), duration |
|
|
|
|
|
|
|
def read_frames_img( |
|
video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1, |
|
max_num_frames=-1, client=None, clip=None, local_num_frames=8 |
|
): |
|
def extract_frame_number(filename): |
|
|
|
if filename.endswith('.jpg'): |
|
match = re.search(r'_(\d+).jpg$', filename) |
|
elif filename.endswith('.jpeg'): |
|
match = re.search(r'_(\d+).jpeg$', filename) |
|
elif filename.endswith('.png'): |
|
match = re.search(r'_(\d+).png$', filename) |
|
else: |
|
raise NotImplementedError(f"Wrong filename: {filename}") |
|
|
|
return int(match.group(1)) if match else -1 |
|
|
|
|
|
def sort_frames(frame_paths): |
|
|
|
return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x))) |
|
|
|
|
|
|
|
if "s3://" in video_path: |
|
img_list = sort_frames(client.list(video_path)) |
|
else: |
|
img_list = sort_frames(list(os.listdir(video_path))) |
|
|
|
|
|
if 'tvqa' in video_path.lower(): |
|
fps = 3.0 |
|
else: |
|
fps = 1.0 |
|
|
|
if clip is not None: |
|
start = float(clip[0]) |
|
end = float(clip[1]) |
|
start = max(0, start) |
|
end = min(len(img_list) / fps, end) |
|
vlen = (end - start) * fps |
|
else: |
|
vlen = len(img_list) |
|
|
|
duration = vlen / fps |
|
|
|
if min_num_frames > vlen: |
|
if sample == 'dynamic_fps1': |
|
min_num_frames = (vlen // local_num_frames) * local_num_frames |
|
else: |
|
min_num_frames = vlen |
|
|
|
if sample == 'dynamic_fps1': |
|
num_segments = int(duration // local_num_frames) |
|
if num_segments == 0: |
|
num_frames = local_num_frames |
|
else: |
|
num_frames = local_num_frames * num_segments |
|
num_frames = min(num_frames, max_num_frames) |
|
num_frames = max(min_num_frames, num_frames) |
|
|
|
num_frames = int(num_frames) |
|
if clip is not None: |
|
def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999): |
|
start_idx = max(1, round(start_sec * fps)) |
|
end_idx = min(round(end_sec * fps), max_frame) |
|
seg_size = float(end_idx - start_idx) / (num_segments - 1) |
|
offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)]) |
|
return offsets |
|
|
|
frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1) |
|
else: |
|
frame_indices = get_frame_indices( |
|
num_frames, vlen, sample=sample, fix_start=fix_start, |
|
min_num_frames=min_num_frames, |
|
max_num_frames=max_num_frames, local_num_frames=local_num_frames |
|
) |
|
|
|
imgs = [] |
|
for idx in frame_indices: |
|
frame_fname = os.path.join(video_path, img_list[idx]) |
|
if "s3://" in video_path: |
|
img_bytes = client.get(frame_fname) |
|
else: |
|
with open(frame_fname, 'rb') as f: |
|
img_bytes = f.read() |
|
img_np = np.frombuffer(img_bytes, np.uint8) |
|
img = cv2.imdecode(img_np, cv2.IMREAD_COLOR) |
|
cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img) |
|
imgs.append(img) |
|
|
|
frames = np.array(imgs, dtype=np.uint8) |
|
|
|
|
|
return frames, frame_indices, fps, duration |
|
|
|
|
|
|
|
VIDEO_READER_FUNCS = { |
|
'av': read_frames_av, |
|
'decord': read_frames_decord, |
|
'gif': read_frames_gif, |
|
'img': read_frames_img, |
|
'frame': read_frames_img |
|
} |
|
|
|
|
|
|
|
def load_video(video_path, max_num_frames=512, media_dict=None): |
|
|
|
if media_dict is None: |
|
media_dict = {'video_read_type': 'decord'} |
|
|
|
if type(video_path) != str: |
|
assert len(video_path) == 1, video_path |
|
video_path = video_path[0] |
|
|
|
if 'start' in media_dict: |
|
clip = [media_dict['start'], media_dict['end']] |
|
else: |
|
clip = None |
|
|
|
|
|
client = None |
|
|
|
frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8) |
|
|
|
sec = [str(round(f / fps, 1)) for f in frame_indices] |
|
|
|
msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. " |
|
|
|
return frames, msg |
|
|
|
|
|
|
|
|
|
|
|
def resize_and_center_crop(image, shortest_edge_length): |
|
|
|
aspect_ratio = float(image.width) / float(image.height) |
|
if aspect_ratio > 1: |
|
new_width = int(shortest_edge_length * aspect_ratio) |
|
new_height = shortest_edge_length |
|
else: |
|
new_width = shortest_edge_length |
|
new_height = int(shortest_edge_length / aspect_ratio) |
|
resized_image = image.resize((new_width, new_height), Image.ANTIALIAS) |
|
|
|
|
|
left = (new_width - shortest_edge_length) / 2 |
|
top = (new_height - shortest_edge_length) / 2 |
|
right = (new_width + shortest_edge_length) / 2 |
|
bottom = (new_height + shortest_edge_length) / 2 |
|
cropped_image = resized_image.crop((left, top, right, bottom)) |
|
|
|
return cropped_image |
|
|
|
|
|
def auto_pad_images(image, grid_params): |
|
assert isinstance(image, Image.Image), "Input should be a Pillow Image" |
|
assert len(grid_params) > 0, "Grid parameters should not be empty" |
|
|
|
|
|
input_width, input_height = image.size |
|
input_aspect_ratio = input_width / input_height |
|
candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params] |
|
closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0])) |
|
|
|
candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3] |
|
|
|
target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1)) |
|
|
|
resize_width, resize_height = target_resolution |
|
if input_width > input_height: |
|
resize_height = int(resize_width / input_aspect_ratio) |
|
else: |
|
resize_width = int(resize_height * input_aspect_ratio) |
|
resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS) |
|
|
|
|
|
pad_width = target_resolution[0] - resize_width |
|
pad_height = target_resolution[1] - resize_height |
|
padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0)) |
|
padded_image.paste(resized_image, (pad_width // 2, pad_height // 2)) |
|
|
|
return padded_image |
|
|
|
|
|
def extract_patches(image, patch_size, overlap_ratio): |
|
assert isinstance(image, Image.Image), "Input should be a Pillow Image" |
|
assert patch_size > 0, "Patch size should be greater than 0" |
|
assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1" |
|
|
|
W, H = image.size |
|
patches = [] |
|
|
|
stride = int(patch_size * (1 - overlap_ratio)) |
|
|
|
num_patches_y = (H - patch_size) // stride + 1 |
|
num_patches_x = (W - patch_size) // stride + 1 |
|
|
|
y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2 |
|
x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2 |
|
|
|
for y in range(y_start, y_start + num_patches_y * stride, stride): |
|
for x in range(x_start, x_start + num_patches_x * stride, stride): |
|
patch = image.crop((x, y, x + patch_size, y + patch_size)) |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
def process_highres_image_crop_split(image, data_args, processor=None): |
|
crop_resolution = data_args.image_crop_resolution |
|
split_resolution = data_args.image_split_resolution |
|
if processor is None: |
|
processor = data_args.image_processor |
|
image_crop = resize_and_center_crop(image, crop_resolution) |
|
image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0) |
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] |
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def process_highres_image(image, processor, grid_pinpoints): |
|
grid_params = [int(x) for x in grid_pinpoints.split(",")] |
|
width_height = max(image.size) |
|
fit_grid_params = [x for x in grid_params if x >= width_height] |
|
if len(fit_grid_params) == 0: |
|
select_size = max(grid_params) |
|
else: |
|
select_size = min(fit_grid_params) |
|
|
|
select_size = max(grid_params) |
|
image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean)) |
|
|
|
|
|
image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"])) |
|
image_padded = image_padded.resize((select_size, select_size)) |
|
image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0) |
|
image_patches = [image_original_resize] + image_patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] |
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float("inf") |
|
|
|
for width, height in possible_resolutions: |
|
if max_resolutions != None and (width * height != patch_size * patch_size): |
|
if (width * height+patch_size*patch_size) > max_resolutions: |
|
continue |
|
|
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
|
|
|
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
|
|
assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}" |
|
return best_fit |
|
|
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
|
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
|
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
|
|
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (tuple): The size of the input image in the format (width, height). |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
patch_size (int): The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: |
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" |
|
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) |
|
range_start = tuple(map(int, matches[0])) |
|
range_end = tuple(map(int, matches[-1])) |
|
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] |
|
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size) |
|
|
|
|
|
|
|
return width // patch_size, height // patch_size |
|
|
|
|
|
def process_anyres_image(image, processor, grid_pinpoints): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
raise NotImplementedError |
|
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: |
|
try: |
|
patch_size = processor.size[0] |
|
except Exception as e: |
|
patch_size = processor.size["shortest_edge"] |
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" |
|
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) |
|
range_start = tuple(map(int, matches[0])) |
|
range_end = tuple(map(int, matches[-1])) |
|
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] |
|
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] |
|
|
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
|
|
patches = divide_to_patches(image_padded, processor.crop_size["height"]) |
|
|
|
|
|
|
|
|
|
if isinstance(processor.size, dict): |
|
shortest_edge = processor.size["shortest_edge"] |
|
else: |
|
shortest_edge = min(processor.size) |
|
image_original_resize = image.resize((shortest_edge, shortest_edge)) |
|
|
|
|
|
|
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] |
|
|
|
|
|
return torch.stack(image_patches, dim=0) |
|
|
|
def process_anyres_image_nopad(image, processor, grid_pinpoints): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
|
|
try: |
|
patch_size = processor.size[0] |
|
except Exception as e: |
|
patch_size = processor.size["shortest_edge"] |
|
|
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" |
|
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: |
|
|
|
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) |
|
range_start = tuple(map(int, matches[0])) |
|
range_end = tuple(map(int, matches[-1])) |
|
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] |
|
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] |
|
|
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) |
|
|
|
|
|
patches = divide_to_patches(image.resize(best_resolution), patch_size) |
|
|
|
|
|
|
|
|
|
if isinstance(processor.size, dict): |
|
shortest_edge = processor.size["shortest_edge"] |
|
else: |
|
shortest_edge = min(processor.size) |
|
image_original_resize = image.resize((shortest_edge, shortest_edge)) |
|
|
|
|
|
|
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] |
|
|
|
|
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
def load_image_from_base64(image): |
|
return Image.open(BytesIO(base64.b64decode(image))) |
|
|
|
|
|
def expand2square(pil_img, background_color): |
|
width, height = pil_img.size |
|
if width == height: |
|
return pil_img |
|
elif width > height: |
|
result = Image.new(pil_img.mode, (width, width), background_color) |
|
result.paste(pil_img, (0, (width - height) // 2)) |
|
return result |
|
else: |
|
result = Image.new(pil_img.mode, (height, height), background_color) |
|
result.paste(pil_img, ((height - width) // 2, 0)) |
|
return result |
|
|
|
|
|
def process_images(images, image_processor, model_cfg): |
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) |
|
new_images = [] |
|
if image_aspect_ratio == "highres": |
|
raise NotImplementedError |
|
for image in images: |
|
image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints) |
|
new_images.append(image) |
|
elif "anyres" in image_aspect_ratio: |
|
for image in images: |
|
if "nopad" in image_aspect_ratio: |
|
image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints) |
|
else: |
|
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) |
|
new_images.append(image) |
|
elif image_aspect_ratio == "crop_split": |
|
raise NotImplementedError |
|
for image in images: |
|
image = process_highres_image_crop_split(image, model_cfg, image_processor) |
|
new_images.append(image) |
|
elif image_aspect_ratio == "pad": |
|
for image in images: |
|
image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean)) |
|
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0] |
|
new_images.append(image) |
|
else: |
|
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"] |
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
return new_images |
|
|
|
|
|
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == "pt": |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f"Unsupported tensor type: {return_tensors}") |
|
return input_ids |
|
|
|
|
|
def get_model_name_from_path(model_path): |
|
model_path = model_path.strip("/") |
|
model_paths = model_path.split("/") |
|
if model_paths[-1].startswith("checkpoint-"): |
|
return model_paths[-2] + "_" + model_paths[-1] |
|
else: |
|
return model_paths[-1] |
|
|
|
|
|
class KeywordsStoppingCriteria(StoppingCriteria): |
|
def __init__(self, keywords, tokenizer, input_ids): |
|
self.keywords = keywords |
|
self.keyword_ids = [] |
|
for keyword in keywords: |
|
cur_keyword_ids = tokenizer(keyword).input_ids |
|
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: |
|
cur_keyword_ids = cur_keyword_ids[1:] |
|
self.keyword_ids.append(torch.tensor(cur_keyword_ids)) |
|
self.tokenizer = tokenizer |
|
self.start_len = input_ids.shape[1] |
|
|
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" |
|
offset = min(output_ids.shape[1] - self.start_len, 3) |
|
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] |
|
for keyword_id in self.keyword_ids: |
|
if output_ids[0, -keyword_id.shape[0] :] == keyword_id: |
|
return True |
|
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] |
|
for keyword in self.keywords: |
|
if keyword in outputs: |
|
return True |
|
return False |
|
|