VideoChat-Flash-Qwen2_5-2B_res448 / mm_projector_builder.py
lixinhao's picture
Upload folder using huggingface_hub
ee124bb verified
raw
history blame
5.25 kB
import torch
import torch.nn as nn
from typing import Callable, Tuple
def bipartite_soft_matching(
metric: torch.Tensor,
r: int,
) -> Tuple[Callable, Callable]:
"""
Applies ToMe with a balanced matching set (50%, 50%).
Input size is [batch, tokens, channels].
r indicates the number of tokens to remove (max 50% of tokens).
"""
protected = 0
t = metric.shape[1]
r = min(r, (t - protected) // 2)
assert r > 0, r
with torch.no_grad():
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = metric[..., ::2, :], metric[..., 1::2, :]
scores = a @ b.transpose(-1, -2)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = x[..., ::2, :], x[..., 1::2, :]
n, t1, c = src.shape
unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = src.gather(dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_add(-2, dst_idx.expand(n, r, c), src) # , reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
n, _, c = unm.shape
src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c))
out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype)
out[..., 1::2, :] = dst
out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm)
out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src)
return out
return merge, unmerge
def merge_wavg(
merge: Callable, x: torch.Tensor, size: torch.Tensor = None
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Applies the merge function by taking a weighted average based on token size.
Returns the merged tensor and the new token sizes.
"""
if size is None:
size = torch.ones_like(x[..., 0, None])
x = merge(x * size, mode="sum")
size = merge(size, mode="sum")
x = x / size
return x, size
class ToMe16_mlp_hd64(nn.Module):
def __init__(self, config, vision_cfg):
super().__init__()
self._config = config
self.mm_hidden_size = config.mm_hidden_size
self.hw = vision_cfg.image_size // vision_cfg.patch_size
self.num_attention_heads = vision_cfg.num_attention_heads
self.mlp = nn.Sequential(nn.Linear(config.mm_hidden_size, config.hidden_size),
nn.GELU(),
nn.Linear(config.hidden_size, config.hidden_size))
self.max_pos_hw = self.hw
self.max_pos_num_frames = config.mm_pos_num_frames
self.num_image_patches_per_side = 8
self.num_frame_patches_per_side = 4
def merge_tokens(self, x, target_num_token):
r"""
x = torch.randn(10, 2560, c)
x = merge_tokens(x, r_merge_list=[1280])
"""
size = None
b, p, c = x.shape
tmp_p = p
r_merge_list = []
assert tmp_p > target_num_token, f"{tmp_p} should greater than {target_num_token}"
while tmp_p != target_num_token:
if tmp_p - target_num_token <= (tmp_p // 2):
r_merge_list.append(tmp_p - target_num_token)
break
else:
r_merge_list.append(tmp_p // 2)
tmp_p = tmp_p - (tmp_p // 2)
head = self.num_attention_heads
dim = c // head
for r in r_merge_list:
metric = x.reshape(b, p, head, dim).mean(2) # [b, p, c//head]
merge, _ = bipartite_soft_matching(
metric,
r
)
x, size = merge_wavg(merge, x, size)
_, p, _ = x.shape
return x
def forward(self, x, compress=False, local_num_frames=-1): # 单帧64
height = width = self.hw
assert height * width == x.shape[1]
if local_num_frames != -1 and local_num_frames != 1:
assert compress is True
if compress:
if local_num_frames != -1:
num_frames = local_num_frames
x = x.reshape(x.shape[0] // local_num_frames, -1, x.shape[-1])
else:
num_frames = x.shape[0]
x = x.reshape(1, -1, x.shape[-1])
num_tome_tokens = 16 * num_frames
else:
num_tome_tokens = 64
x = self.merge_tokens(x, target_num_token=num_tome_tokens)
x = self.mlp(x)
return x
@property
def config(self):
return {"mm_projector_type": "tome16_mlp_hd64"}
def build_vision_projector(config, delay_load=False, **kwargs):
projector_type = getattr(config, "mm_projector_type", "linear")
if projector_type == 'tome16_mlp_hd64':
return ToMe16_mlp_hd64(config, kwargs["vision_cfg"])
raise ValueError(f"Unknown projector type: {projector_type}")