File size: 35,065 Bytes
ee124bb dc9d9f3 ee124bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
# Copyright 2024
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import re
import torch
import torch.nn as nn
import random
from typing import List, Optional, Tuple, Union, Dict
from transformers import AutoConfig, AutoModelForCausalLM
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers import Qwen2Config
from .vision_tower_builder import build_vision_tower
from .mm_projector_builder import build_vision_projector
from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
from .conversation import conv_templates, SeparatorStyle
from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_anyres_image_grid_shape, load_video
from .modeling_qwen2_flash import Qwen2Model_Flash, Qwen2ForCausalLM_Flash
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
delay_load = getattr(config, "delay_load", False)
self.vision_tower = build_vision_tower(config, delay_load=delay_load)
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
if "nopad" in getattr(config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
self.frame_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
mm_patch_merge_type = model_args.mm_patch_merge_type
self.config.mm_vision_tower = vision_tower
self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")
if self.get_vision_tower() is None:
vision_tower = build_vision_tower(model_args)
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
else:
if fsdp is not None and len(fsdp) > 0:
vision_tower = self.vision_tower[0]
else:
vision_tower = self.vision_tower
vision_tower.load_model()
self.config.use_mm_proj = True
self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.mm_patch_merge_type = mm_patch_merge_type
if getattr(self, "mm_projector", None) is None:
self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
if "unpad" in mm_patch_merge_type:
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
if "nopad" in getattr(self.config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
self.frame_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
else:
# In case it is frozen by LoRA
for p in self.mm_projector.parameters():
p.requires_grad = True
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
def get_w(weights, keyword):
return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
if self.config.mm_projector_type =='lxh_qformer':
incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"), strict=False)
else:
incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_video_image(self, images_list, video_idx_in_batch):
# video encoder编码后按图像的connector处理
bs = len(images_list)
concat_images = []
concat_videos = []
for idx, image in enumerate(images_list):
if idx in video_idx_in_batch:
concat_videos.append(image)
else:
concat_images.append(image)
# print(concat_videos[0].shape)
has_image = len(concat_images) > 0
has_video = len(concat_videos) > 0
mm_local_num_frames = getattr(self.config, "mm_local_num_frames", -1)
assert mm_local_num_frames != -1
if has_image:
image_split_sizes = [image.shape[0] for image in concat_images]
concat_images = torch.cat([image.unsqueeze(1) for image in concat_images], dim=0)
# print("input vit image.shape:", concat_images.shape)
images_features = self.get_model().get_vision_tower()(concat_images) # B_i, N, D
images_features = torch.split(images_features, image_split_sizes)
if has_video:
video_split_sizes = [video.shape[0] // mm_local_num_frames for video in concat_videos]
concat_videos = torch.cat([video.reshape(video.shape[0] // mm_local_num_frames, mm_local_num_frames, video.shape[1], video.shape[2], video.shape[3]) for video in concat_videos], dim=0)
# print("input vit video.shape:", concat_videos.shape)
videos_features = self.get_model().get_vision_tower()(concat_videos) # B_v, N, D
videos_features = [v.reshape(-1, v.shape[-2] // mm_local_num_frames, v.shape[-1]) for v in torch.split(videos_features, video_split_sizes)]
all_videos_or_images_features = []
img_idx = 0
vid_idx = 0
for idx in range(bs):
if idx in video_idx_in_batch:
feat = self.get_model().mm_projector(videos_features[vid_idx], compress=True, local_num_frames=getattr(self.config, "mm_local_num_frames", -1))
vid_idx += 1
else:
feat = self.get_model().mm_projector(images_features[img_idx], compress=False)
img_idx += 1
# print("video_idx_in_batch:", video_idx_in_batch)
all_videos_or_images_features.append(feat)
if has_video:
assert vid_idx == len(videos_features), f"vid: {vid_idx} != {len(videos_features)}"
if has_image:
assert img_idx == len(images_features), f"img: {img_idx} != {len(images_features)}"
return all_videos_or_images_features
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None):
assert type(modalities) is list, modalities
vision_tower = self.get_vision_tower()
# rank_print(modalities)
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
video_idx_in_batch = []
for _ in range(len(modalities)):
if modalities[_] == "video":
video_idx_in_batch.append(_)
images_list = []
for image in images:
if image.ndim == 4:
images_list.append(image)
else:
images_list.append(image.unsqueeze(0))
vision_encode_type = getattr(self.config, "vision_encode_type", "image")
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
frame_aspect_ratio = getattr(self.config, "frame_aspect_ratio", "square")
mm_newline_position = getattr(self.config, "mm_newline_position", "nothing")
if vision_encode_type == "video_image": # video backbone, process video with compress
image_features = self.encode_video_image(images_list, video_idx_in_batch=video_idx_in_batch)
else:
raise NotImplementedError(vision_encode_type)
if mm_patch_merge_type == "flat":
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_idx in video_idx_in_batch: # video operations
if "anyres" in frame_aspect_ratio:
raise NotImplementedError
else:
frame_feature = image_feature
if "pad" in mm_patch_merge_type:
if mm_newline_position == 'one_token':
frame_feature = frame_feature.flatten(0, 1)
if "unpad" in mm_patch_merge_type:
frame_feature = torch.cat((frame_feature, self.model.image_newline[None].to(frame_feature.device)), dim=0)
else:
frame_feature = torch.cat((frame_feature, self.model.frame_newline[None].to(frame_feature.device)), dim=0)
elif mm_newline_position == 'nothing':
frame_feature = frame_feature.flatten(0, 1)
else:
raise NotImplementedError("add pad please!!")
else:
frame_feature = frame_feature.flatten(0, 1)
# print(f"final video frame_feature.shape: {frame_feature.shape}")
image_feature = frame_feature
elif image_feature.shape[0] > 1: # multi patches and multi images operations
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
origin_size = image_feature.shape
height = width = self.get_model().mm_projector.num_image_patches_per_side
assert height * width == base_image_feature.shape[0], f"height:{height}, width: {width}, base_image_feature: {base_image_feature.shape}"
if "anyres_max" in image_aspect_ratio:
matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
if matched_anyres_max_num_patches:
max_num_patches = int(matched_anyres_max_num_patches.group(1))
if "anyres" in image_aspect_ratio:
if hasattr(self.get_vision_tower(), "image_size"):
vision_tower_image_size = self.get_vision_tower().image_size
else:
raise ValueError("vision_tower_image_size is not found in the vision tower.")
try:
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size, max_resolutions=None)
except Exception as e:
print(f"Error: {e}")
raise e
# num_patch_width, num_patch_height = 2, 2
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
raise NotImplementedError(image_aspect_ratio)
image_feature = image_feature.view(2, 2, height, width, -1)
if "maxpool2x2" in mm_patch_merge_type:
raise NotImplementedError
elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
raise NotImplementedError
elif "unpad" in mm_patch_merge_type:
raise NotImplementedError
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
if "nobase" in mm_patch_merge_type:
pass
else:
try:
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
except Exception as e:
raise ValueError(f"{num_patch_width} {num_patch_height} now: base_image_feature: {base_image_feature.shape}, {image_feature.shape}, image_sizes[image_idx]: {image_sizes[image_idx]}, origin_size: {origin_size}, {image_sizes[image_idx]}, {self.config.image_grid_pinpoints}, {vision_tower_image_size}")
else: # single image operations
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)
# print(f"image/video_feature.shape: {image_feature.shape}")
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
# raise NotImplementedError(f"images.shape={images.shape}, modalities={modalities}")
image_features = self.encode_image(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
raise NotImplementedError
# print(f"Total images len(image_features: {len(image_features)}")
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
new_input_embeds = []
new_labels = []
cur_image_idx = 0
mm_llm_compress = getattr(self.config, "mm_llm_compress", False)
if mm_llm_compress:
self.model.llm_compress_type = getattr(self.config, "llm_compress_type", "attention")
self.model.llm_compress_layer_list = getattr(self.config, "llm_compress_layer_list", [8, 16, 24])
self.model.llm_image_token_ratio_list = getattr(self.config, "llm_image_token_ratio_list", [1.0, 0.5, 0.25, 0.125])
first_image_token_position = []
text_prompt_lens = []
else:
self.model.llm_compress_type = "attention"
self.model.llm_compress_layer_list = []
self.model.llm_image_token_ratio_list = []
first_image_token_position = []
text_prompt_lens = []
# rank_print("Inserting Images embedding")
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
if mm_llm_compress:
####### copy from pdrop, only support single image/video NOTE ##################
# record image position for further dropping
image_index = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
assert len(image_index) == 1, f"Only support singe/video: {image_index}"
if image_index == []:
first_image_token_position.append(-1)
else:
first_image_token_position.append(image_index[0])
# record input instruction length in inference mode
if not self.training:
if image_index == []:
assert num_images == 0, num_images
else:
assert num_images == 1, f"num_images={num_images}"
text_prompt_lens.append(cur_input_ids.shape[0] - num_images) # consider image place holder
###############################################
# print(f"num_images={num_images}")
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
try:
cur_image_features = image_features[cur_image_idx]
except IndexError:
print(f"cur_image_idx={cur_image_idx} is not ok")
cur_image_features = image_features[cur_image_idx - 1]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
# import pdb; pdb.set_trace()
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
if mm_llm_compress:
self.model.first_image_token_position = first_image_token_position
self.model.text_prompt_lens = text_prompt_lens
self.model.num_image_token_lens = [image_feature.shape[0] for image_feature in image_features]
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
# rank_print("Finishing Inserting")
new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
# print("Prepare pos id")
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
# print("tokenizer padding")
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
if getattr(self.config, "use_pos_skipping", False) and self.training:
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
split_position = random.randint(0, new_input_embeds.size(1))
left_add = random.randint(0, self.config.pos_skipping_range)
right_add = random.randint(left_add, self.config.pos_skipping_range)
position_ids[:, :split_position] += left_add
position_ids[:, split_position:] += right_add
# import pdb; pdb.set_trace()
# print("Finish preparing")
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
class VideoChatFlashQwenConfig(Qwen2Config):
model_type = "videochat_flash_qwen"
class VideoChatFlashQwenModel(LlavaMetaModel, Qwen2Model_Flash):
config_class = VideoChatFlashQwenConfig
def __init__(self, config: VideoChatFlashQwenConfig):
super(VideoChatFlashQwenModel, self).__init__(config)
class VideoChatFlashQwenForCausalLM(LlavaMetaForCausalLM, Qwen2ForCausalLM_Flash):
config_class = VideoChatFlashQwenConfig
def __init__(self, config):
# super(Qwen2ForCausalLM, self).__init__(config)
Qwen2ForCausalLM_Flash.__init__(self, config)
config.model_type = "videochat_flash_qwen"
# config.rope_scaling = None
self.model = VideoChatFlashQwenModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
modalities: Optional[List[str]] = ["image"],
dpo_forward: Optional[bool] = False,
cache_position=None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)
# print("inputs_embeds.shape:", inputs_embeds.shape)
if dpo_forward:
raise NotImplementedError
else:
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if images is not None:
(inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes)
else:
self.model.image_token_posi = [-1]
self.model.prompt_len = None
self.model.image_tokens = [0]
inputs_embeds = self.get_model().embed_tokens(inputs)
return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
@torch.no_grad()
def chat(self,
video_path,
tokenizer,
user_prompt,
chat_history=None,
return_history=True,
max_num_frames=512,
media_dict=None,
generation_config={}):
frames, time_msg = load_video(video_path, max_num_frames=max_num_frames, media_dict=media_dict)
image_sizes = [frames[0].shape[:2]]
frames = [self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda()]
conv = conv_templates["qwen_2"].copy()
if chat_history is None or len(chat_history) == 0:
user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{time_msg.strip()} {user_prompt}'
else:
assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history
for msg in chat_history:
conv.append_message(msg['role'], msg['content'])
conv.append_message(conv.roles[0], user_prompt)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
if tokenizer.pad_token_id is None:
if "qwen" in tokenizer.name_or_path.lower():
print("Setting pad token to bos token for qwen model.")
tokenizer.pad_token_id = 151643
attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = self.generate(
inputs=input_ids,
images=frames,
attention_mask=attention_masks,
modalities=["video"],
image_sizes=image_sizes,
use_cache=True,
stopping_criteria=[stopping_criteria],
**generation_config
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
# print(f"\033[91m== Question: \033[0m\n{prompt}\n")
# print(f"\033[91m== Response: \033[0m\n{outputs}\n")
if chat_history is None:
chat_history = []
chat_history.append({"role":conv.roles[0], "content":user_prompt})
chat_history.append({"role":conv.roles[1], "content":outputs})
if return_history:
return outputs, chat_history
else:
return outputs
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
AutoConfig.register("videochat_flash_qwen", VideoChatFlashQwenConfig)
AutoModelForCausalLM.register(VideoChatFlashQwenConfig, VideoChatFlashQwenForCausalLM) |