File size: 34,521 Bytes
ee124bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
from PIL import Image
from io import BytesIO
import base64
import math
import ast
import re
import torch
from transformers import StoppingCriteria
from .constants import IMAGE_TOKEN_INDEX
import random
import os
import io
import av
import cv2
import imageio
from decord import VideoReader
import numpy as np



######################## load video ########################

def get_index(num_frames, num_segments):
    seg_size = float(num_frames - 1) / num_segments
    start = int(seg_size / 2)
    offsets = np.array([
        start + int(np.round(seg_size * idx)) for idx in range(num_segments)
    ])
    return offsets


def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
    """
    Converts a present time with the given time base and start_pts offset to seconds.

    Returns:
        time_in_seconds (float): The corresponding time in seconds.

    https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
    """
    if pts == math.inf:
        return math.inf

    return int(pts - start_pts) * time_base


def get_pyav_video_duration(video_reader):
    video_stream = video_reader.streams.video[0]
    video_duration = pts_to_secs(
        video_stream.duration,
        video_stream.time_base,
        video_stream.start_time
    )
    return float(video_duration)



def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8):

    if min_num_frames > vlen:
        if sample == 'dynamic_fps1':
            min_num_frames = (vlen // local_num_frames) * local_num_frames
        else:
            min_num_frames = vlen


    if sample == 'dynamic_fps1':

        duration = float(vlen) / input_fps
        num_segments = int(duration // local_num_frames)
        if num_segments == 0:
            num_frames = local_num_frames
        else:
            num_frames = local_num_frames * num_segments

        if max_num_frames > 0:
            num_frames = min(num_frames, max_num_frames)
        sample = "middle" # NOTE

        # logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!")

    num_frames = max(min_num_frames, num_frames)

    # print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m")
        
    if sample in ["rand", "middle"]: # uniform sampling
        acc_samples = min(num_frames, vlen)
        # split the video into `acc_samples` intervals, and sample from each interval.
        intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
        ranges = []
        for idx, interv in enumerate(intervals[:-1]):
            ranges.append((interv, intervals[idx + 1] - 1))
        if sample == 'rand':
            try:
                frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
            except:
                frame_indices = np.random.permutation(vlen)[:acc_samples]
                frame_indices.sort()
                frame_indices = list(frame_indices)
        elif fix_start is not None:
            frame_indices = [x[0] + fix_start for x in ranges]
        elif sample == 'middle':
            frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
        else:
            raise NotImplementedError

        if len(frame_indices) < num_frames:  # padded with last frame
            padded_frame_indices = [frame_indices[-1]] * num_frames
            padded_frame_indices[:len(frame_indices)] = frame_indices
            frame_indices = padded_frame_indices
    elif "fps" in sample:  # fps0.5, sequentially sample frames at 0.5 fps
        output_fps = float(sample[3:])
        duration = float(vlen) / input_fps
        delta = 1 / output_fps  # gap between frames, this is also the clip length each frame represents
        frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
        frame_indices = np.around(frame_seconds * input_fps).astype(int)
        frame_indices = [e for e in frame_indices if e < vlen]
        if max_num_frames > 0 and len(frame_indices) > max_num_frames:
            frame_indices = frame_indices[:max_num_frames]
            # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
    else:
        raise ValueError(f"Not support sample type: {sample}")
    
    
    return frame_indices


def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8):
    if clip is not None:
        raise NotImplementedError("av don't support clip!!!")
    if 's3://' in video_path:
        video_bytes = client.get(video_path)
        byteio = io.BytesIO(video_bytes)
        byteio.seek(0)
        reader = av.open(byteio)
    else:
        byteio = None
        reader = av.open(video_path)
    frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)]
    vlen = len(frames)
    duration = get_pyav_video_duration(reader)
    fps = vlen / float(duration)
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
    )
    frames = np.stack([frames[idx] for idx in frame_indices])  # (T, H, W, C), torch.uint8
    # frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    if byteio != None:
        byteio.close()
        
    reader.close()

    return frames, frame_indices, float(fps), duration


def read_frames_gif(
        video_path, num_frames, sample='rand', fix_start=None, 
        min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8
    ):
    if clip is not None:
        raise NotImplementedError("Gif don't support clip!!!")
    if 's3://' in video_path:
        video_bytes = client.get(video_path)
        byteio = io.BytesIO(video_bytes)
        gif = imageio.get_reader(byteio)
    else:
        byteio = None
        gif = imageio.get_reader(video_path)
    vlen = len(gif)
    fps = 1.
    duration = vlen / fps
    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        min_num_frames=min_num_frames,
        max_num_frames=max_num_frames, local_num_frames=local_num_frames,
        input_fps=fps 
    )
    frames = []

    min_h = min_w = 100000
    hw_set = set()
    for index, frame in enumerate(gif):
        # for index in frame_idxs:
        if index in frame_indices:
            frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
            frame = frame.astype(np.uint8)
            # # (H x W x C) to (C x H x W)
            # frame = frame.permute(2, 0, 1)
            frames.append(frame)
            hw_set.add(frame.shape)
            if frame.shape[0] < min_h:
                min_h = frame.shape[0]
            if frame.shape[1] < min_w:
                min_w = frame.shape[1]
    # print(hw_set, min_h, min_w)
    if len(hw_set) > 1:
        frames = [i[:min_h, :min_w] for i in frames]

    frames = np.stack(frames)  # .float() / 255

    if byteio != None:
        byteio.close()

    return frames, frame_indices, float(fps), duration # for tgif



def read_frames_decord(
        video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
        max_num_frames=-1, client=None, clip=None, local_num_frames=8
    ):

    if video_path.endswith('.avi'):
        return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample,
                    fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames, 
                    client=client, clip=clip, local_num_frames=local_num_frames)
    if 's3://' in video_path:
        video_bytes = client.get(video_path)
        if video_bytes is None or len(video_bytes) == 0:
            raise ValueError(f"Can't read byte from {video_path}!")
        byteio = io.BytesIO(video_bytes)
        video_reader = VideoReader(byteio, num_threads=1)
    else:
        byteio = None
        video_reader = VideoReader(video_path, num_threads=1)
    vlen = len(video_reader)
    fps = video_reader.get_avg_fps()
    duration = vlen / float(fps)
    

    if clip:
        start, end = clip
        start = max(0, start)
        end = min(duration - 0.1, end)
        duration = end - start
        vlen = int(duration * fps) 
        start_index = int(start * fps)

    frame_indices = get_frame_indices(
        num_frames, vlen, sample=sample, fix_start=fix_start,
        input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
    )
    if clip:
        frame_indices = [f + start_index for f in frame_indices]

    # print(fps, frame_indices)
    frames = video_reader.get_batch(frame_indices).asnumpy()  # (T, H, W, C), torch.uint8
    # https://github.com/dmlc/decord/issues/208
    video_reader.seek(0)

    if byteio != None:
        byteio.close()
    # frames = frames.permute(0, 3, 1, 2)  # (T, C, H, W), torch.uint8
    return frames, frame_indices, float(fps), duration



def read_frames_img(
        video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
        max_num_frames=-1, client=None, clip=None, local_num_frames=8
    ):
    def extract_frame_number(filename):
        # Extract the numeric part from the filename using regular expressions
        if filename.endswith('.jpg'):
            match = re.search(r'_(\d+).jpg$', filename)
        elif filename.endswith('.jpeg'):
            match = re.search(r'_(\d+).jpeg$', filename)
        elif filename.endswith('.png'):
            match = re.search(r'_(\d+).png$', filename)
        else:
            raise NotImplementedError(f"Wrong filename: {filename}")

        return int(match.group(1)) if match else -1


    def sort_frames(frame_paths):
        # Extract filenames from each path and sort by their numeric part
        return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))

    # img_list=[]

    if "s3://" in video_path:
        img_list = sort_frames(client.list(video_path))
    else:
        img_list = sort_frames(list(os.listdir(video_path)))


    if 'tvqa' in video_path.lower():
        fps = 3.0
    else:
        fps = 1.0 

    if clip is not None:
        start = float(clip[0])
        end = float(clip[1])
        start = max(0, start)
        end = min(len(img_list) / fps, end)
        vlen = (end - start) * fps
    else:
        vlen = len(img_list)
    
    duration = vlen / fps

    if min_num_frames > vlen:
        if sample == 'dynamic_fps1':
            min_num_frames = (vlen // local_num_frames) * local_num_frames
        else:
            min_num_frames = vlen

    if sample == 'dynamic_fps1':
        num_segments = int(duration // local_num_frames)
        if num_segments == 0:
            num_frames = local_num_frames
        else:
            num_frames = local_num_frames * num_segments
        num_frames = min(num_frames, max_num_frames) 
        num_frames = max(min_num_frames, num_frames)

    num_frames = int(num_frames)
    if clip is not None:
        def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999):
            start_idx = max(1, round(start_sec * fps))
            end_idx = min(round(end_sec * fps), max_frame)
            seg_size = float(end_idx - start_idx) / (num_segments - 1)
            offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)])
            return offsets

        frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1)
    else:
        frame_indices = get_frame_indices(
            num_frames, vlen, sample=sample, fix_start=fix_start,
            min_num_frames=min_num_frames,
            max_num_frames=max_num_frames, local_num_frames=local_num_frames
        )

    imgs = []
    for idx in frame_indices:
        frame_fname = os.path.join(video_path, img_list[idx])
        if "s3://" in video_path:
            img_bytes = client.get(frame_fname)
        else:
            with open(frame_fname, 'rb') as f:
                img_bytes = f.read()
        img_np = np.frombuffer(img_bytes, np.uint8)
        img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
        cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
        imgs.append(img)

    frames = np.array(imgs, dtype=np.uint8)


    return frames, frame_indices, fps, duration 



VIDEO_READER_FUNCS = {
    'av': read_frames_av,
    'decord': read_frames_decord,
    'gif': read_frames_gif,
    'img': read_frames_img,
    'frame': read_frames_img
}



def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict):

    if media_dict is None:
        media_dict = {'video_read_type': 'decord'}

    if type(video_path) != str:
        assert len(video_path) == 1, video_path
        video_path = video_path[0]

    if 'start' in media_dict:
        clip = [media_dict['start'], media_dict['end']]
    else:
        clip = None
    
    if 's3://' in video_path:
        from petrel_client.client import Client
        client = Client(conf_path='~/petreloss.conf')
    else:
        client = None

    frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8)

    sec = [str(round(f / fps, 1)) for f in frame_indices]

    msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. "

    return frames, msg


######################## load video ########################


def resize_and_center_crop(image, shortest_edge_length):
    # Calculate new dimensions and resize
    aspect_ratio = float(image.width) / float(image.height)
    if aspect_ratio > 1:
        new_width = int(shortest_edge_length * aspect_ratio)
        new_height = shortest_edge_length
    else:
        new_width = shortest_edge_length
        new_height = int(shortest_edge_length / aspect_ratio)
    resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)

    # Calculate the position and perform the center crop
    left = (new_width - shortest_edge_length) / 2
    top = (new_height - shortest_edge_length) / 2
    right = (new_width + shortest_edge_length) / 2
    bottom = (new_height + shortest_edge_length) / 2
    cropped_image = resized_image.crop((left, top, right, bottom))

    return cropped_image


def auto_pad_images(image, grid_params):
    assert isinstance(image, Image.Image), "Input should be a Pillow Image"
    assert len(grid_params) > 0, "Grid parameters should not be empty"

    # Step 1: Calculate and find the closest aspect ratio
    input_width, input_height = image.size
    input_aspect_ratio = input_width / input_height
    candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
    closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))

    candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]

    target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))

    resize_width, resize_height = target_resolution
    if input_width > input_height:
        resize_height = int(resize_width / input_aspect_ratio)
    else:
        resize_width = int(resize_height * input_aspect_ratio)
    resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)

    # Step 5: Pad the resized image if necessary to match the target resolution
    pad_width = target_resolution[0] - resize_width
    pad_height = target_resolution[1] - resize_height
    padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
    padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))

    return padded_image


def extract_patches(image, patch_size, overlap_ratio):
    assert isinstance(image, Image.Image), "Input should be a Pillow Image"
    assert patch_size > 0, "Patch size should be greater than 0"
    assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"

    W, H = image.size
    patches = []

    stride = int(patch_size * (1 - overlap_ratio))

    num_patches_y = (H - patch_size) // stride + 1
    num_patches_x = (W - patch_size) // stride + 1

    y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
    x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2

    for y in range(y_start, y_start + num_patches_y * stride, stride):
        for x in range(x_start, x_start + num_patches_x * stride, stride):
            patch = image.crop((x, y, x + patch_size, y + patch_size))
            patches.append(patch)

    return patches


def process_highres_image_crop_split(image, data_args, processor=None):
    crop_resolution = data_args.image_crop_resolution
    split_resolution = data_args.image_split_resolution
    if processor is None:
        processor = data_args.image_processor
    image_crop = resize_and_center_crop(image, crop_resolution)
    image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
    image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)


def process_highres_image(image, processor, grid_pinpoints):
    grid_params = [int(x) for x in grid_pinpoints.split(",")]
    width_height = max(image.size)
    fit_grid_params = [x for x in grid_params if x >= width_height]
    if len(fit_grid_params) == 0:
        select_size = max(grid_params)
    else:
        select_size = min(fit_grid_params)
    # FIXME: always select the 448
    select_size = max(grid_params)
    image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))

    # FIXME: this seems to be a bug that it always resizes instead of padding
    image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
    image_padded = image_padded.resize((select_size, select_size))
    image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
    image_patches = [image_original_resize] + image_patches
    image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)


def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        if max_resolutions != None and (width * height != patch_size * patch_size):
            if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global
                continue
        # Calculate the downscaled size to keep the aspect ratio
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)

        # Calculate effective and wasted resolutions
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    # print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}")
    assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}"
    return best_fit


def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    # Determine which dimension (width or height) to fill
    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        # Width will be filled completely
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        # Height will be filled completely
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    # Create a new image with the target size and paste the resized image onto it
    new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image


def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size)

    # print("get width/patch size", width, patch_size, flush=True)

    return width // patch_size, height // patch_size


def process_anyres_image(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    raise NotImplementedError
    # Convert grid_pinpoints from string to list
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        try:
            patch_size = processor.size[0]
        except Exception as e:
            patch_size = processor.size["shortest_edge"]
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]

    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    patches = divide_to_patches(image_padded, processor.crop_size["height"])

    # FIXME: this seems to be a bug that it resizes instead of pad.
    # but to keep it consistent with previous, i will keep it as it is
    # TODO: uncomment below to ablate with the padding
    if isinstance(processor.size, dict):
        shortest_edge = processor.size["shortest_edge"]
    else:
        shortest_edge = min(processor.size)
    image_original_resize = image.resize((shortest_edge, shortest_edge))
    # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
    # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))

    image_patches = [image_original_resize] + patches
    image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]

    # print("image.size", image.size, "len(image_patches):",  len(image_patches), "patch_size:", image_patches[0].shape)
    return torch.stack(image_patches, dim=0)

def process_anyres_image_nopad(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    # Convert grid_pinpoints from string to list
    try:
        patch_size = processor.size[0]
    except Exception as e:
        patch_size = processor.size["shortest_edge"]

    assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"

    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]

    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制
    # image_padded = resize_and_pad_image(image, best_resolution)

    patches = divide_to_patches(image.resize(best_resolution), patch_size)

    # FIXME: this seems to be a bug that it resizes instead of pad.
    # but to keep it consistent with previous, i will keep it as it is
    # TODO: uncomment below to ablate with the padding
    if isinstance(processor.size, dict):
        shortest_edge = processor.size["shortest_edge"]
    else:
        shortest_edge = min(processor.size)
    image_original_resize = image.resize((shortest_edge, shortest_edge))
    # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
    # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))

    image_patches = [image_original_resize] + patches
    image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]

    # raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}")
    return torch.stack(image_patches, dim=0)


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def expand2square(pil_img, background_color):
    width, height = pil_img.size
    if width == height:
        return pil_img
    elif width > height:
        result = Image.new(pil_img.mode, (width, width), background_color)
        result.paste(pil_img, (0, (width - height) // 2))
        return result
    else:
        result = Image.new(pil_img.mode, (height, height), background_color)
        result.paste(pil_img, ((height - width) // 2, 0))
        return result


def process_images(images, image_processor, model_cfg):
    image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
    new_images = []
    if image_aspect_ratio == "highres":
        raise NotImplementedError
        for image in images:
            image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
            new_images.append(image)
    elif "anyres" in image_aspect_ratio:
        for image in images:
            if "nopad" in image_aspect_ratio:
                image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints)
            else:
                image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
            new_images.append(image)
    elif image_aspect_ratio == "crop_split":
        raise NotImplementedError
        for image in images:
            image = process_highres_image_crop_split(image, model_cfg, image_processor)
            new_images.append(image)
    elif image_aspect_ratio == "pad":
        for image in images:
            image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
            image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
            new_images.append(image)
    else:
        return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
    if all(x.shape == new_images[0].shape for x in new_images):
        new_images = torch.stack(new_images, dim=0)
    return new_images


def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == "pt":
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f"Unsupported tensor type: {return_tensors}")
    return input_ids


def get_model_name_from_path(model_path):
    model_path = model_path.strip("/")
    model_paths = model_path.split("/")
    if model_paths[-1].startswith("checkpoint-"):
        return model_paths[-2] + "_" + model_paths[-1]
    else:
        return model_paths[-1]


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = []
        for keyword in keywords:
            cur_keyword_ids = tokenizer(keyword).input_ids
            if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
                cur_keyword_ids = cur_keyword_ids[1:]
            self.keyword_ids.append(torch.tensor(cur_keyword_ids))
        self.tokenizer = tokenizer
        self.start_len = input_ids.shape[1]

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)"  # TODO
        offset = min(output_ids.shape[1] - self.start_len, 3)
        self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
        for keyword_id in self.keyword_ids:
            if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
                return True
        outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
        for keyword in self.keywords:
            if keyword in outputs:
                return True
        return False