--- language: - en library_name: transformers license: apache-2.0 metrics: - accuracy tags: - multimodal pipeline_tag: video-text-to-text model-index: - name: VideoChat-Flash-Qwen2-7B_res448 results: - task: type: multimodal dataset: name: MLVU type: mlvu metrics: - type: accuracy value: 74.7 name: accuracy verified: true - task: type: multimodal dataset: name: MVBench type: mvbench metrics: - type: accuracy value: 74.0 name: accuracy verified: true - task: type: multimodal dataset: name: Perception Test type: percepTest metrics: - type: accuracy value: 76.2 name: accuracy verified: true - task: type: multimodal dataset: name: LongVideoBench type: longvideobench metrics: - type: accuracy value: 64.7 name: accuracy verified: true - task: type: multimodal dataset: name: VideoMME (wo sub) type: videomme metrics: - type: accuracy value: 65.3 name: accuracy verified: true - task: type: multimodal dataset: name: LVBench type: lvbench metrics: - type: accuracy value: 48.2 name: accuracy verified: true --- # 🦜VideoChat-Flash-Qwen2-7B_res448⚑ [\[πŸ“° Blog\]](https://internvideo.github.io/blog/2024-12-31-VideoChat-Flash) [\[πŸ“‚ GitHub\]](https://github.com/OpenGVLab/VideoChat-Flash) [\[πŸ“œ Tech Report\]](https://www.arxiv.org/abs/2501.00574) [\[πŸ—¨οΈ Chat Demo\]](https://huggingface.co/spaces/OpenGVLab/VideoChat-Flash) VideoChat-Flash-7B is constructed upon UMT-L (300M) and Qwen2-7B, employing only **16 tokens per frame**. By leveraging Yarn to extend the context window to 128k (Qwen2's native context window is 32k), our model supports input sequences of up to approximately **10,000 frames**. > Note: Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension, to ensure optimal performance, using English for interaction is recommended. ## πŸ“ˆ Performance | Model | MVBench | LongVideoBench | VideoMME(w/o sub)| | --- | --- | --- | --- | |[VideoChat-Flash-Qwen2_5-2B@448](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2_5-2B_res448)| 70.0 | 58.3 | 57.0| |[VideoChat-Flash-Qwen2-7B@224](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2-7B_res224) | 73.2 | 64.2 | 64.0 | |[VideoChat-Flash-Qwen2-7B@448](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2-7B_res448)| 74.0| 64.7 | 65.3| ## πŸš€ How to use the model First, you need to install [flash attention2](https://github.com/Dao-AILab/flash-attention) and some other modules. We provide a simple installation example below: ``` pip install transformers==4.39.2 pip install av pip install imageio pip install decord pip install opencv-python pip install flash-attn --no-build-isolation ``` Then you could use our model: ```python from transformers import AutoModel, AutoTokenizer # model setting model_path = 'OpenGVLab/VideoChat-Flash-Qwen2-7B_res448' tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda() image_processor = model.get_vision_tower().image_processor mm_llm_compress = False # use the global compress or not if mm_llm_compress: model.config.mm_llm_compress = True model.config.llm_compress_type = "uniform0_attention" model.config.llm_compress_layer_list = [4, 18] model.config.llm_image_token_ratio_list = [1, 0.75, 0.25] else: model.config.mm_llm_compress = True # evaluation setting max_num_frames = 512 generation_config = dict( do_sample=False, temperature=0.0, max_new_tokens=1024, top_p=0.1, num_beams=1 ) video_path = "your_video.mp4" # single-turn conversation question1 = "Describe this video in detail." output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config) print(output1) # multi-turn conversation question2 = "How many people appear in the video?" output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config) print(output2) ``` ## ✏️ Citation ```bibtex @article{li2024videochatflash, title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling}, author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others}, journal={arXiv preprint arXiv:2501.00574}, year={2024} } ```