# Copyright 2024 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from abc import ABC, abstractmethod import re import torch import torch.nn as nn import random from typing import List, Optional, Tuple, Union, Dict from transformers import AutoConfig, AutoModelForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.generation.utils import GenerateOutput from transformers import Qwen2Config from .vision_tower_builder import build_vision_tower from .mm_projector_builder import build_vision_projector from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN from .conversation import conv_templates, SeparatorStyle from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_anyres_image_grid_shape, load_video from .modeling_qwen2_flash import Qwen2Model_Flash, Qwen2ForCausalLM_Flash class LlavaMetaModel: def __init__(self, config): super(LlavaMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): delay_load = getattr(config, "delay_load", False) self.vision_tower = build_vision_tower(config, delay_load=delay_load) self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config) if "unpad" in getattr(config, "mm_patch_merge_type", ""): self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype)) if "nopad" in getattr(config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing": self.frame_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype)) def get_vision_tower(self): vision_tower = getattr(self, "vision_tower", None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def initialize_vision_modules(self, model_args, fsdp=None): vision_tower = model_args.vision_tower mm_vision_select_layer = model_args.mm_vision_select_layer mm_vision_select_feature = model_args.mm_vision_select_feature pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter mm_patch_merge_type = model_args.mm_patch_merge_type self.config.mm_vision_tower = vision_tower self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "") if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) if fsdp is not None and len(fsdp) > 0: self.vision_tower = [vision_tower] else: self.vision_tower = vision_tower else: if fsdp is not None and len(fsdp) > 0: vision_tower = self.vision_tower[0] else: vision_tower = self.vision_tower vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear") self.config.mm_vision_select_layer = mm_vision_select_layer self.config.mm_vision_select_feature = mm_vision_select_feature self.config.mm_patch_merge_type = mm_patch_merge_type if getattr(self, "mm_projector", None) is None: self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config) if "unpad" in mm_patch_merge_type: embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std) if "nopad" in getattr(self.config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing": embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype)) self.frame_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu") def get_w(weights, keyword): return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k} if self.config.mm_projector_type =='lxh_qformer': incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"), strict=False) else: incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector")) print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}") class LlavaMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def encode_video_image(self, images_list, video_idx_in_batch): # video encoder编码后按图像的connector处理 bs = len(images_list) concat_images = [] concat_videos = [] for idx, image in enumerate(images_list): if idx in video_idx_in_batch: concat_videos.append(image) else: concat_images.append(image) # print(concat_videos[0].shape) has_image = len(concat_images) > 0 has_video = len(concat_videos) > 0 mm_local_num_frames = getattr(self.config, "mm_local_num_frames", -1) assert mm_local_num_frames != -1 if has_image: image_split_sizes = [image.shape[0] for image in concat_images] concat_images = torch.cat([image.unsqueeze(1) for image in concat_images], dim=0) # print("input vit image.shape:", concat_images.shape) images_features = self.get_model().get_vision_tower()(concat_images) # B_i, N, D images_features = torch.split(images_features, image_split_sizes) if has_video: video_split_sizes = [video.shape[0] // mm_local_num_frames for video in concat_videos] concat_videos = torch.cat([video.reshape(video.shape[0] // mm_local_num_frames, mm_local_num_frames, video.shape[1], video.shape[2], video.shape[3]) for video in concat_videos], dim=0) # print("input vit video.shape:", concat_videos.shape) videos_features = self.get_model().get_vision_tower()(concat_videos) # B_v, N, D videos_features = [v.reshape(-1, v.shape[-2] // mm_local_num_frames, v.shape[-1]) for v in torch.split(videos_features, video_split_sizes)] all_videos_or_images_features = [] img_idx = 0 vid_idx = 0 for idx in range(bs): if idx in video_idx_in_batch: feat = self.get_model().mm_projector(videos_features[vid_idx], compress=True, local_num_frames=getattr(self.config, "mm_local_num_frames", -1)) vid_idx += 1 else: feat = self.get_model().mm_projector(images_features[img_idx], compress=False) img_idx += 1 # print("video_idx_in_batch:", video_idx_in_batch) all_videos_or_images_features.append(feat) if has_video: assert vid_idx == len(videos_features), f"vid: {vid_idx} != {len(videos_features)}" if has_image: assert img_idx == len(images_features), f"img: {img_idx} != {len(images_features)}" return all_videos_or_images_features def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None): assert type(modalities) is list, modalities vision_tower = self.get_vision_tower() # rank_print(modalities) if vision_tower is None or images is None or input_ids.shape[1] == 1: return input_ids, position_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: if type(images) is list: images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] video_idx_in_batch = [] for _ in range(len(modalities)): if modalities[_] == "video": video_idx_in_batch.append(_) images_list = [] for image in images: if image.ndim == 4: images_list.append(image) else: images_list.append(image.unsqueeze(0)) vision_encode_type = getattr(self.config, "vision_encode_type", "image") mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") frame_aspect_ratio = getattr(self.config, "frame_aspect_ratio", "square") mm_newline_position = getattr(self.config, "mm_newline_position", "nothing") if vision_encode_type == "video_image": # video backbone, process video with compress image_features = self.encode_video_image(images_list, video_idx_in_batch=video_idx_in_batch) else: raise NotImplementedError(vision_encode_type) if mm_patch_merge_type == "flat": image_features = [x.flatten(0, 1) for x in image_features] elif mm_patch_merge_type.startswith("spatial"): new_image_features = [] for image_idx, image_feature in enumerate(image_features): if image_idx in video_idx_in_batch: # video operations if "anyres" in frame_aspect_ratio: raise NotImplementedError else: frame_feature = image_feature if "pad" in mm_patch_merge_type: if mm_newline_position == 'one_token': frame_feature = frame_feature.flatten(0, 1) if "unpad" in mm_patch_merge_type: frame_feature = torch.cat((frame_feature, self.model.image_newline[None].to(frame_feature.device)), dim=0) else: frame_feature = torch.cat((frame_feature, self.model.frame_newline[None].to(frame_feature.device)), dim=0) elif mm_newline_position == 'nothing': frame_feature = frame_feature.flatten(0, 1) else: raise NotImplementedError("add pad please!!") else: frame_feature = frame_feature.flatten(0, 1) # print(f"final video frame_feature.shape: {frame_feature.shape}") image_feature = frame_feature elif image_feature.shape[0] > 1: # multi patches and multi images operations base_image_feature = image_feature[0] image_feature = image_feature[1:] origin_size = image_feature.shape height = width = self.get_model().mm_projector.num_image_patches_per_side assert height * width == base_image_feature.shape[0], f"height:{height}, width: {width}, base_image_feature: {base_image_feature.shape}" if "anyres_max" in image_aspect_ratio: matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio) if matched_anyres_max_num_patches: max_num_patches = int(matched_anyres_max_num_patches.group(1)) if "anyres" in image_aspect_ratio: if hasattr(self.get_vision_tower(), "image_size"): vision_tower_image_size = self.get_vision_tower().image_size else: raise ValueError("vision_tower_image_size is not found in the vision tower.") try: num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size, max_resolutions=None) except Exception as e: print(f"Error: {e}") raise e # num_patch_width, num_patch_height = 2, 2 image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) else: raise NotImplementedError(image_aspect_ratio) image_feature = image_feature.view(2, 2, height, width, -1) if "maxpool2x2" in mm_patch_merge_type: raise NotImplementedError elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches: raise NotImplementedError elif "unpad" in mm_patch_merge_type: raise NotImplementedError else: image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() image_feature = image_feature.flatten(0, 3) if "nobase" in mm_patch_merge_type: pass else: try: image_feature = torch.cat((base_image_feature, image_feature), dim=0) except Exception as e: raise ValueError(f"{num_patch_width} {num_patch_height} now: base_image_feature: {base_image_feature.shape}, {image_feature.shape}, image_sizes[image_idx]: {image_sizes[image_idx]}, origin_size: {origin_size}, {image_sizes[image_idx]}, {self.config.image_grid_pinpoints}, {vision_tower_image_size}") else: # single image operations image_feature = image_feature[0] if "unpad" in mm_patch_merge_type: image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0) # print(f"image/video_feature.shape: {image_feature.shape}") new_image_features.append(image_feature) image_features = new_image_features else: raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") else: # raise NotImplementedError(f"images.shape={images.shape}, modalities={modalities}") image_features = self.encode_image(images) # TODO: image start / end is not implemented here to support pretraining. if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): raise NotImplementedError # print(f"Total images len(image_features: {len(image_features)}") # Let's just add dummy tensors if they do not exist, # it is a headache to deal with None all the time. # But it is not ideal, and if you have a better idea, # please open an issue / submit a PR, thanks. _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] new_input_embeds = [] new_labels = [] cur_image_idx = 0 mm_llm_compress = getattr(self.config, "mm_llm_compress", False) if mm_llm_compress: self.model.llm_compress_type = getattr(self.config, "llm_compress_type", "attention") self.model.llm_compress_layer_list = getattr(self.config, "llm_compress_layer_list", [8, 16, 24]) self.model.llm_image_token_ratio_list = getattr(self.config, "llm_image_token_ratio_list", [1.0, 0.5, 0.25, 0.125]) first_image_token_position = [] text_prompt_lens = [] else: self.model.llm_compress_type = "attention" self.model.llm_compress_layer_list = [] self.model.llm_image_token_ratio_list = [] first_image_token_position = [] text_prompt_lens = [] # rank_print("Inserting Images embedding") for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() if mm_llm_compress: ####### copy from pdrop, only support single image/video NOTE ################## # record image position for further dropping image_index = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() assert len(image_index) == 1, f"Only support singe/video: {image_index}" if image_index == []: first_image_token_position.append(-1) else: first_image_token_position.append(image_index[0]) # record input instruction length in inference mode if not self.training: if image_index == []: assert num_images == 0, num_images else: assert num_images == 1, f"num_images={num_images}" text_prompt_lens.append(cur_input_ids.shape[0] - num_images) # consider image place holder ############################################### # print(f"num_images={num_images}") if num_images == 0: cur_image_features = image_features[cur_image_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 continue image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] cur_input_ids_noim = [] cur_labels = labels[batch_idx] cur_labels_noim = [] for i in range(len(image_token_indices) - 1): cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) split_sizes = [x.shape[0] for x in cur_labels_noim] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] for i in range(num_images + 1): cur_new_input_embeds.append(cur_input_embeds_no_im[i]) cur_new_labels.append(cur_labels_noim[i]) if i < num_images: try: cur_image_features = image_features[cur_image_idx] except IndexError: print(f"cur_image_idx={cur_image_idx} is not ok") cur_image_features = image_features[cur_image_idx - 1] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] # import pdb; pdb.set_trace() cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) if mm_llm_compress: self.model.first_image_token_position = first_image_token_position self.model.text_prompt_lens = text_prompt_lens self.model.num_image_token_lens = [image_feature.shape[0] for image_feature in image_features] # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) # rank_print("Finishing Inserting") new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)] new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) # print("Prepare pos id") for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): cur_len = cur_new_embed.shape[0] if getattr(self.config, "tokenizer_padding_side", "right") == "left": new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0)) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) else: new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) # print("tokenizer padding") if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None: position_ids = None if getattr(self.config, "use_pos_skipping", False) and self.training: position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device) split_position = random.randint(0, new_input_embeds.size(1)) left_add = random.randint(0, self.config.pos_skipping_range) right_add = random.randint(left_add, self.config.pos_skipping_range) position_ids[:, :split_position] += left_add position_ids[:, split_position:] += right_add # import pdb; pdb.set_trace() # print("Finish preparing") return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels def initialize_vision_tokenizer(self, model_args, tokenizer): if model_args.mm_use_im_patch_token: tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if model_args.mm_use_im_start_end: num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) self.resize_token_embeddings(len(tokenizer)) if num_new_tokens > 0: input_embeddings = self.get_input_embeddings().weight.data output_embeddings = self.get_output_embeddings().weight.data input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True) input_embeddings[-num_new_tokens:] = input_embeddings_avg output_embeddings[-num_new_tokens:] = output_embeddings_avg if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = True for p in self.get_output_embeddings().parameters(): p.requires_grad = False if model_args.pretrain_mm_mlp_adapter: mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu") embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"] assert num_new_tokens == 2 if input_embeddings.shape == embed_tokens_weight.shape: input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] elif embed_tokens_weight.shape[0] == num_new_tokens: input_embeddings[-num_new_tokens:] = embed_tokens_weight else: raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") elif model_args.mm_use_im_patch_token: if model_args.tune_mm_mlp_adapter: for p in self.get_input_embeddings().parameters(): p.requires_grad = False for p in self.get_output_embeddings().parameters(): p.requires_grad = False class VideoChatFlashQwenConfig(Qwen2Config): model_type = "videochat_flash_qwen" class VideoChatFlashQwenModel(LlavaMetaModel, Qwen2Model_Flash): config_class = VideoChatFlashQwenConfig def __init__(self, config: VideoChatFlashQwenConfig): super(VideoChatFlashQwenModel, self).__init__(config) class VideoChatFlashQwenForCausalLM(LlavaMetaForCausalLM, Qwen2ForCausalLM_Flash): config_class = VideoChatFlashQwenConfig def __init__(self, config): # super(Qwen2ForCausalLM, self).__init__(config) Qwen2ForCausalLM_Flash.__init__(self, config) config.model_type = "videochat_flash_qwen" # config.rope_scaling = None self.model = VideoChatFlashQwenModel(config) self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() def get_model(self): return self.model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, images: Optional[torch.FloatTensor] = None, image_sizes: Optional[List[List[int]]] = None, return_dict: Optional[bool] = None, modalities: Optional[List[str]] = ["image"], dpo_forward: Optional[bool] = False, cache_position=None, ) -> Union[Tuple, CausalLMOutputWithPast]: if inputs_embeds is None: (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes) # print("inputs_embeds.shape:", inputs_embeds.shape) if dpo_forward: raise NotImplementedError else: return super().forward( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) @torch.no_grad() def generate( self, inputs: Optional[torch.Tensor] = None, images: Optional[torch.Tensor] = None, image_sizes: Optional[torch.Tensor] = None, modalities: Optional[List[str]] = ["image"], **kwargs, ) -> Union[GenerateOutput, torch.LongTensor]: position_ids = kwargs.pop("position_ids", None) attention_mask = kwargs.pop("attention_mask", None) if "inputs_embeds" in kwargs: raise NotImplementedError("`inputs_embeds` is not supported") if images is not None: (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes) else: self.model.image_token_posi = [-1] self.model.prompt_len = None self.model.image_tokens = [0] inputs_embeds = self.get_model().embed_tokens(inputs) return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs) @torch.no_grad() def chat(self, video_path, tokenizer, user_prompt, chat_history=None, return_history=True, max_num_frames=512, media_dict=None, generation_config={}): frames, time_msg = load_video(video_path, max_num_frames=max_num_frames, media_dict=media_dict) image_sizes = [frames[0].shape[:2]] frames = [self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].half().cuda()] conv = conv_templates["qwen_2"].copy() if chat_history is None or len(chat_history) == 0: user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{time_msg.rstrip()} {user_prompt}' else: assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history for msg in chat_history: conv.append_message(msg['role'], msg['content']) conv.append_message(conv.roles[0], user_prompt) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda() if tokenizer.pad_token_id is None: if "qwen" in tokenizer.name_or_path.lower(): print("Setting pad token to bos token for qwen model.") tokenizer.pad_token_id = 151643 attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda() stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = self.generate( inputs=input_ids, images=frames, attention_mask=attention_masks, modalities=["video"], image_sizes=image_sizes, use_cache=True, stopping_criteria=[stopping_criteria], **generation_config ) outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() if outputs.endswith(stop_str): outputs = outputs[: -len(stop_str)] outputs = outputs.strip() print(f"\033[91m== Question: \033[0m\n{prompt}\n") print(f"\033[91m== Response: \033[0m\n{outputs}\n") if chat_history is None: chat_history = [] chat_history.append({"role":conv.roles[0], "content":user_prompt}) chat_history.append({"role":conv.roles[1], "content":outputs}) if return_history: return outputs, chat_history else: return outputs def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): images = kwargs.pop("images", None) image_sizes = kwargs.pop("image_sizes", None) inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) if images is not None: inputs["images"] = images if image_sizes is not None: inputs["image_sizes"] = image_sizes return inputs AutoConfig.register("videochat_flash_qwen", VideoChatFlashQwenConfig) AutoModelForCausalLM.register(VideoChatFlashQwenConfig, VideoChatFlashQwenForCausalLM)