|
from typing import Optional, Tuple, Union, Dict |
|
from dataclasses import dataclass |
|
from functools import partial, reduce |
|
from PIL import Image |
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
import os |
|
from transformers.image_processing_utils import BatchFeature, get_size_dict |
|
from transformers.image_transforms import ( |
|
convert_to_rgb, |
|
normalize, |
|
rescale, |
|
resize, |
|
to_channel_dimension_format, |
|
) |
|
from transformers.image_utils import ( |
|
ChannelDimension, |
|
PILImageResampling, |
|
to_numpy_array, |
|
) |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from functools import partial |
|
try: |
|
from flash_attn import flash_attn_qkvpacked_func |
|
except: |
|
print("You need to install flash_attn") |
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
|
|
|
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None, |
|
attn_type='flash_v2'): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
if attn_type not in ['origin', 'flash_v2']: |
|
raise NotImplementedError(f"Not support attn_type: {attn_type}") |
|
|
|
|
|
|
|
self.attn_type = attn_type |
|
if attn_type == 'flash_v2': |
|
self.attn_drop = attn_drop |
|
else: |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
|
|
if self.attn_type == 'flash_v2': |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1) |
|
x = flash_attn_qkvpacked_func(qkv, dropout_p=self.attn_drop, softmax_scale=self.scale, causal=False).reshape(B, N, -1) |
|
else: |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[ |
|
2] |
|
|
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
attn_head_dim=None): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if init_values > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.tubelet_size = int(tubelet_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, out_channels=embed_dim, |
|
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(self.tubelet_size, patch_size[0], patch_size[1]) |
|
) |
|
|
|
|
|
def forward(self, x, **kwargs): |
|
B, C, T, H, W = x.shape |
|
|
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame: |
|
|
|
|
|
|
|
|
|
T = ckpt_num_frame |
|
new_T = cur_frame |
|
n_position = n_position // new_T * T |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
P = int((n_position // T) ** 0.5) |
|
C = d_hid |
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) |
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') |
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
return sinusoid_table |
|
else: |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
|
|
def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
|
|
|
|
|
|
if n_position != pre_n_position: |
|
T = ckpt_num_frame |
|
P = 14 |
|
C = d_hid |
|
new_P = int((n_position // cur_frame) ** 0.5) |
|
|
|
|
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2) |
|
sinusoid_table = torch.nn.functional.interpolate( |
|
sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False) |
|
|
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
|
|
if cur_frame != ckpt_num_frame: |
|
|
|
|
|
T = ckpt_num_frame |
|
new_T = cur_frame |
|
|
|
P = int((n_position // cur_frame) ** 0.5) |
|
C = d_hid |
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) |
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') |
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
|
|
return sinusoid_table |
|
|
|
|
|
class PretrainVisionTransformerEncoder(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1, |
|
use_learnable_pos_emb=False, |
|
use_checkpoint=False, checkpoint_num=0, |
|
ckpt_num_frame=-1, with_ln=True, return_index=-1 |
|
): |
|
super().__init__() |
|
self.num_features = self.embed_dim = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
num_frames=num_frames, tubelet_size=tubelet_size |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
self.depth = depth + return_index + 1 |
|
self.use_checkpoint = use_checkpoint |
|
self.checkpoint_num = checkpoint_num |
|
|
|
|
|
|
|
|
|
|
|
if use_learnable_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim)) |
|
else: |
|
|
|
if img_size != 224: |
|
self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) |
|
self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14) |
|
else: |
|
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) |
|
self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values) |
|
for i in range(self.depth)]) |
|
|
|
if with_ln: |
|
self.vision_layernorm = nn.LayerNorm(embed_dim, eps=1e-12) |
|
else: |
|
self.vision_layernorm = nn.Identity() |
|
|
|
if use_learnable_pos_emb: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def forward_features(self, x, use_image=False): |
|
x = self.patch_embed(x) |
|
|
|
if use_image: |
|
x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach() |
|
else: |
|
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() |
|
|
|
B, _, C = x.shape |
|
x_vis = x |
|
|
|
for idx, blk in enumerate(self.blocks): |
|
if self.use_checkpoint and idx < self.checkpoint_num: |
|
x_vis = checkpoint.checkpoint(blk, x_vis) |
|
else: |
|
x_vis = blk(x_vis) |
|
|
|
|
|
x_vis = self.vision_layernorm(x_vis) |
|
return x_vis |
|
|
|
def forward(self, x, use_image=False): |
|
x_vis = self.forward_features(x, use_image) |
|
return x_vis |
|
|
|
|
|
class PretrainVisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
encoder_in_chans=3, |
|
encoder_embed_dim=768, |
|
encoder_depth=12, |
|
encoder_num_heads=12, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=0., |
|
use_learnable_pos_emb=False, |
|
num_frames=8, |
|
tubelet_size=1, |
|
use_checkpoint=False, |
|
checkpoint_num=0, |
|
ckpt_num_frame=4, |
|
return_index=-1, |
|
with_ln=False |
|
): |
|
super().__init__() |
|
|
|
self.encoder = PretrainVisionTransformerEncoder( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=encoder_in_chans, |
|
embed_dim=encoder_embed_dim, |
|
depth=encoder_depth, |
|
num_heads=encoder_num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
num_frames=num_frames, |
|
tubelet_size=tubelet_size, |
|
use_learnable_pos_emb=use_learnable_pos_emb, |
|
use_checkpoint=use_checkpoint, |
|
checkpoint_num=checkpoint_num, |
|
ckpt_num_frame=ckpt_num_frame, |
|
with_ln=with_ln, |
|
return_index=return_index |
|
) |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token', 'clip_pos_embed'} |
|
|
|
def forward(self, x, use_image=False): |
|
T = x.shape[2] |
|
x_vis = self.encoder(x, use_image) |
|
B, TL, C = x_vis.shape |
|
x_vis = x_vis.view(B, T, TL // T, C) |
|
|
|
return x_vis |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UMTImageProcessor: |
|
def __init__(self, image_mean=(0.485, 0.456, 0.406), image_std=(0.229, 0.224, 0.225), size=(224, 224), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST): |
|
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224} |
|
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size") |
|
|
|
self.image_mean = image_mean |
|
self.image_std = image_std |
|
self.size = size |
|
self.resample = resample |
|
self.rescale_factor = rescale_factor |
|
self.data_format = data_format |
|
self.crop_size = crop_size |
|
|
|
def preprocess(self, images, return_tensors, target_size=None): |
|
if isinstance(images, Image.Image): |
|
images = [images] |
|
else: |
|
|
|
images = [to_numpy_array(image) for image in images] |
|
assert isinstance(images, list) |
|
|
|
if target_size is None: |
|
target_size = self.size |
|
|
|
transforms = [ |
|
convert_to_rgb, |
|
to_numpy_array, |
|
partial(resize, size=target_size, resample=self.resample, data_format=self.data_format), |
|
partial(rescale, scale=self.rescale_factor, data_format=self.data_format), |
|
partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format), |
|
partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format), |
|
] |
|
|
|
images = reduce(lambda x, f: [*map(f, x)], transforms, images) |
|
data = {"pixel_values": images} |
|
|
|
return BatchFeature(data=data, tensor_type=return_tensors) |
|
|
|
|
|
class UMTVisionConfig: |
|
model_type = "umt_vision_model" |
|
|
|
def __init__( |
|
self, |
|
num_frames=4, |
|
hidden_size=1024, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
num_channels=3, |
|
image_size=224, |
|
patch_size=16, |
|
return_idx=-2 |
|
|
|
): |
|
|
|
self.num_frames = num_frames |
|
self.hidden_size = hidden_size |
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_channels = num_channels |
|
self.patch_size = patch_size |
|
self.image_size = image_size |
|
self.return_idx = return_idx |
|
|
|
|
|
def build_vit(config, pt_type='origin'): |
|
model = PretrainVisionTransformer( |
|
img_size=config.image_size, |
|
patch_size=16, |
|
encoder_embed_dim=1024, |
|
encoder_depth=24, |
|
encoder_num_heads=16, |
|
drop_path_rate=0., |
|
num_frames=config.num_frames, |
|
tubelet_size=1, |
|
use_checkpoint=True, |
|
checkpoint_num=24, |
|
return_index=config.return_idx, |
|
with_ln=True, |
|
) |
|
|
|
|
|
|
|
return model |
|
|
|
|
|
|
|
class UMTVisionTower(nn.Module): |
|
def __init__(self, vision_tower, vision_tower_cfg, delay_load=False, pt_type='origin', image_size=224): |
|
super().__init__() |
|
|
|
self.is_loaded = False |
|
self.pt_type = pt_type |
|
|
|
self.config = UMTVisionConfig(num_frames=vision_tower_cfg.mm_local_num_frames, return_idx=vision_tower_cfg.mm_vision_select_layer, image_size=image_size) |
|
|
|
self.vision_tower_name = vision_tower |
|
|
|
self.image_processor = UMTImageProcessor(size=(image_size, image_size)) |
|
|
|
if not delay_load: |
|
print(f"Loading vision tower: {vision_tower}") |
|
self.load_model() |
|
elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False): |
|
|
|
print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.") |
|
self.load_model() |
|
elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts: |
|
print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.") |
|
self.load_model() |
|
else: |
|
self.cfg_only = self.config |
|
|
|
def load_model(self, device_map=None): |
|
if self.is_loaded: |
|
print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name)) |
|
return |
|
|
|
self.vision_tower = build_vit(self.config, pt_type=self.pt_type) |
|
self.vision_tower.requires_grad_(False) |
|
|
|
self.is_loaded = True |
|
|
|
def forward(self, images): |
|
if type(images) is list: |
|
raise NotImplementedError |
|
else: |
|
|
|
|
|
T = images.shape[1] |
|
images = images.permute(0, 2, 1, 3, 4) |
|
image_embeds = self.vision_tower(images, use_image=(T == 1)) |
|
B, T, L, C = image_embeds.shape |
|
image_embeds = image_embeds.reshape(B, -1, C) |
|
|
|
return image_embeds |
|
|
|
@property |
|
def dummy_feature(self): |
|
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) |
|
|
|
@property |
|
def dtype(self): |
|
for p in self.vision_tower.parameters(): |
|
return p.dtype |
|
|
|
@property |
|
def device(self): |
|
for p in self.vision_tower.parameters(): |
|
return p.device |
|
|
|
@property |
|
def hidden_size(self): |
|
return self.config.hidden_size |
|
|
|
@property |
|
def num_patches(self): |
|
return (self.config.image_size // self.config.patch_size) ** 2 |
|
|
|
@property |
|
def num_patches_per_side(self): |
|
return self.config.image_size // self.config.patch_size |
|
|
|
@property |
|
def image_size(self): |
|
return self.config.image_size |
|
|
|
|
|
def build_vision_tower(vision_tower_cfg, **kwargs): |
|
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None)) |
|
|
|
|
|
if "umt-hd" in vision_tower: |
|
return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, image_size=448, **kwargs) |
|
elif "umt" in vision_tower: |
|
raise NotImplementedError |
|
return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs) |
|
|
|
raise ValueError(f"Unknown vision tower: {vision_tower}") |
|
|