|
import torch |
|
import torch.nn as nn |
|
from typing import Callable, Tuple |
|
|
|
|
|
def bipartite_soft_matching( |
|
metric: torch.Tensor, |
|
r: int, |
|
) -> Tuple[Callable, Callable]: |
|
""" |
|
Applies ToMe with a balanced matching set (50%, 50%). |
|
|
|
Input size is [batch, tokens, channels]. |
|
r indicates the number of tokens to remove (max 50% of tokens). |
|
""" |
|
protected = 0 |
|
|
|
t = metric.shape[1] |
|
r = min(r, (t - protected) // 2) |
|
|
|
assert r > 0, r |
|
|
|
with torch.no_grad(): |
|
metric = metric / metric.norm(dim=-1, keepdim=True) |
|
a, b = metric[..., ::2, :], metric[..., 1::2, :] |
|
scores = a @ b.transpose(-1, -2) |
|
|
|
node_max, node_idx = scores.max(dim=-1) |
|
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] |
|
|
|
unm_idx = edge_idx[..., r:, :] |
|
src_idx = edge_idx[..., :r, :] |
|
dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx) |
|
|
|
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: |
|
src, dst = x[..., ::2, :], x[..., 1::2, :] |
|
n, t1, c = src.shape |
|
unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c)) |
|
src = src.gather(dim=-2, index=src_idx.expand(n, r, c)) |
|
dst = dst.scatter_add(-2, dst_idx.expand(n, r, c), src) |
|
|
|
return torch.cat([unm, dst], dim=1) |
|
|
|
def unmerge(x: torch.Tensor) -> torch.Tensor: |
|
unm_len = unm_idx.shape[1] |
|
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] |
|
n, _, c = unm.shape |
|
|
|
src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c)) |
|
|
|
out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype) |
|
|
|
out[..., 1::2, :] = dst |
|
out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm) |
|
out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src) |
|
|
|
return out |
|
|
|
return merge, unmerge |
|
|
|
|
|
def merge_wavg( |
|
merge: Callable, x: torch.Tensor, size: torch.Tensor = None |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Applies the merge function by taking a weighted average based on token size. |
|
Returns the merged tensor and the new token sizes. |
|
""" |
|
if size is None: |
|
size = torch.ones_like(x[..., 0, None]) |
|
|
|
x = merge(x * size, mode="sum") |
|
size = merge(size, mode="sum") |
|
|
|
x = x / size |
|
return x, size |
|
|
|
|
|
|
|
|
|
class ToMe16_mlp_hd64(nn.Module): |
|
def __init__(self, config, vision_cfg): |
|
super().__init__() |
|
self._config = config |
|
self.mm_hidden_size = config.mm_hidden_size |
|
self.hw = vision_cfg.image_size // vision_cfg.patch_size |
|
self.num_attention_heads = vision_cfg.num_attention_heads |
|
self.mlp = nn.Sequential(nn.Linear(config.mm_hidden_size, config.hidden_size), |
|
nn.GELU(), |
|
nn.Linear(config.hidden_size, config.hidden_size)) |
|
self.max_pos_hw = self.hw |
|
self.max_pos_num_frames = config.mm_pos_num_frames |
|
self.num_image_patches_per_side = 8 |
|
self.num_frame_patches_per_side = 4 |
|
|
|
def merge_tokens(self, x, target_num_token): |
|
r""" |
|
x = torch.randn(10, 2560, c) |
|
x = merge_tokens(x, r_merge_list=[1280]) |
|
""" |
|
size = None |
|
b, p, c = x.shape |
|
tmp_p = p |
|
r_merge_list = [] |
|
assert tmp_p > target_num_token, f"{tmp_p} should greater than {target_num_token}" |
|
while tmp_p != target_num_token: |
|
if tmp_p - target_num_token <= (tmp_p // 2): |
|
r_merge_list.append(tmp_p - target_num_token) |
|
break |
|
else: |
|
r_merge_list.append(tmp_p // 2) |
|
tmp_p = tmp_p - (tmp_p // 2) |
|
|
|
|
|
head = self.num_attention_heads |
|
|
|
dim = c // head |
|
for r in r_merge_list: |
|
metric = x.reshape(b, p, head, dim).mean(2) |
|
merge, _ = bipartite_soft_matching( |
|
metric, |
|
r |
|
) |
|
x, size = merge_wavg(merge, x, size) |
|
_, p, _ = x.shape |
|
|
|
return x |
|
|
|
|
|
|
|
def forward(self, x, compress=False, local_num_frames=-1): |
|
height = width = self.hw |
|
assert height * width == x.shape[1] |
|
|
|
if local_num_frames != -1 and local_num_frames != 1: |
|
assert compress is True |
|
if compress: |
|
if local_num_frames != -1: |
|
num_frames = local_num_frames |
|
x = x.reshape(x.shape[0] // local_num_frames, -1, x.shape[-1]) |
|
else: |
|
num_frames = x.shape[0] |
|
x = x.reshape(1, -1, x.shape[-1]) |
|
num_tome_tokens = 16 * num_frames |
|
else: |
|
num_tome_tokens = 64 |
|
|
|
x = self.merge_tokens(x, target_num_token=num_tome_tokens) |
|
x = self.mlp(x) |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {"mm_projector_type": "tome16_mlp_hd64"} |
|
|
|
|
|
|
|
|
|
def build_vision_projector(config, delay_load=False, **kwargs): |
|
projector_type = getattr(config, "mm_projector_type", "linear") |
|
|
|
if projector_type == 'tome16_mlp_hd64': |
|
return ToMe16_mlp_hd64(config, kwargs["vision_cfg"]) |
|
|
|
raise ValueError(f"Unknown projector type: {projector_type}") |
|
|