File size: 4,885 Bytes
76e4411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0ebd1
76e4411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c0d9de
9c4dc80
34f1e61
8b526c0
 
 
 
9c4dc80
 
 
76e4411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- en
library_name: transformers
license: apache-2.0
metrics:
- accuracy
tags:
- multimodal
pipeline_tag: video-text-to-text
model-index:
- name: VideoChat-Flash-Qwen2-7B_res448
  results:
  - task:
      type: multimodal
    dataset:
      name: MLVU
      type: mlvu
    metrics:
    - type: accuracy
      value: 74.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: MVBench
      type: mvbench
    metrics:
    - type: accuracy
      value: 74.0
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: Perception Test
      type: percepTest
    metrics:
    - type: accuracy
      value: 76.2
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LongVideoBench
      type: longvideobench
    metrics:
    - type: accuracy
      value: 64.7
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: VideoMME (wo sub)
      type: videomme
    metrics:
    - type: accuracy
      value: 65.3
      name: accuracy
      verified: true
  - task:
      type: multimodal
    dataset:
      name: LVBench
      type: lvbench
    metrics:
    - type: accuracy
      value: 48.2
      name: accuracy
      verified: true


---

# 🦜VideoChat-Flash-Qwen2-7B_res448⚡
[\[📰 Blog\]](https://internvideo.github.io/blog/2024-12-31-VideoChat-Flash) [\[📂 GitHub\]](https://github.com/OpenGVLab/VideoChat-Flash)   [\[📜 Tech Report\]](https://www.arxiv.org/abs/2501.00574) [\[🗨️ Chat Demo\]](https://huggingface.co/spaces/OpenGVLab/VideoChat-Flash)

VideoChat-Flash-7B is constructed upon UMT-L (300M) and Qwen2-7B, employing only **16 tokens per frame**. By leveraging Yarn to extend the context window to 128k (Qwen2's native context window is 32k), our model supports input sequences of up to approximately **10,000 frames**. 

> Note: Due to a predominantly English training corpus, the model only exhibits basic Chinese comprehension, to ensure optimal performance, using English for interaction is recommended.



## 📈 Performance
| Model |  MVBench | LongVideoBench |  VideoMME(w/o sub)| 
| ---   |  ---     |   ---            | ---     | 
|[VideoChat-Flash-Qwen2_5-2B@448](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2_5-2B_res448)| 70.0 | 58.3   | 57.0| 
|[VideoChat-Flash-Qwen2-7B@224](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2-7B_res224) | 73.2 | 64.2 | 64.0 | 
|[VideoChat-Flash-Qwen2-7B@448](https://huggingface.co/OpenGVLab/VideoChat-Flash-Qwen2-7B_res448)| 74.0| 64.7 | 65.3| 

## 🚀 How to use the model

First, you need to install [flash attention2](https://github.com/Dao-AILab/flash-attention) and some other modules. We provide a simple installation example below:
```
pip install transformers==4.40.1
pip install av
pip install imageio
pip install decord
pip install opencv-python
pip install flash-attn --no-build-isolation
```
Then you could use our model:
```python
from transformers import AutoModel, AutoTokenizer

# model setting
model_path = 'OpenGVLab/VideoChat-Flash-Qwen2-7B_res448'

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).half().cuda()
image_processor = model.get_vision_tower().image_processor

mm_llm_compress = False # use the global compress or not
if mm_llm_compress:
    model.config.mm_llm_compress = True
    model.config.llm_compress_type = "uniform0_attention"
    model.config.llm_compress_layer_list = [4, 18]
    model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
else:
    model.config.mm_llm_compress = True

# evaluation setting
max_num_frames = 512
generation_config = dict(
    do_sample=False,
    temperature=0.0,
    max_new_tokens=1024,
    top_p=0.1,
    num_beams=1
)

video_path = "your_video.mp4"

# single-turn conversation
question1 = "Describe this video in detail."
output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output1)

# multi-turn conversation
question2 = "How many people appear in the video?"
output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)

print(output2)
```

## ✏️ Citation

```bibtex

@article{li2024videochatflash,
  title={VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling},
  author={Li, Xinhao and Wang, Yi and Yu, Jiashuo and Zeng, Xiangyu and Zhu, Yuhan and Huang, Haian and Gao, Jianfei and Li, Kunchang and He, Yinan and Wang, Chenting and others},
  journal={arXiv preprint arXiv:2501.00574},
  year={2024}
}

```