update README.md
Browse files- .gitattributes +1 -0
- README.md +229 -0
- assets/example_image1.jpg +0 -0
- assets/example_image2.jpg +0 -0
- assets/example_video.mp4 +3 -0
- assets/overview.png +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,232 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
base_model:
|
4 |
+
- OpenGVLab/InternViT-300M-448px
|
5 |
+
- internlm/internlm2_5-7b-chat
|
6 |
+
new_version: OpenGVLab/PVC-InternVL-8B
|
7 |
+
language:
|
8 |
+
- multilingual
|
9 |
+
pipeline_tag: image-text-to-text
|
10 |
+
library_name: transformers
|
11 |
+
tags:
|
12 |
+
- internvl
|
13 |
+
- video
|
14 |
+
- token compression
|
15 |
---
|
16 |
+
|
17 |
+
# PVC-InternVL2-8B
|
18 |
+
|
19 |
+
[\[📂 GitHub\]](https://github.com/OpenGVLab/PVC)
|
20 |
+
|
21 |
+
## Introduction
|
22 |
+
|
23 |
+
We introduce the **Progressive Visual Token Compression (PVC)** in large vision-language models (VLMs), which unifies the visual inputs as videos and progressively compresses vision tokens across video frames. Our PVC achieves:
|
24 |
+
|
25 |
+
* Preserve spatial details and temporal dynamics for both images and videos.
|
26 |
+
* Effectively reduce the tokens used for each video frame and image tile.
|
27 |
+
* SoTA performance on various video benchmarks, including long and fine-grained short video tasks.
|
28 |
+
* No performance loss on image benchmarks, especially on detail-sensitive tasks.
|
29 |
+
|
30 |
+
<div style="text-align: center;">
|
31 |
+
<img src="./assets/overview.png" width="70%"/>
|
32 |
+
</div>
|
33 |
+
|
34 |
+
## Results
|
35 |
+
|
36 |
+
Our implementation is based on the [InternVL2](https://github.com/OpenGVLab/InternVL) model, referred to as **PVC<sub>InternVL2</sub>**
|
37 |
+
|
38 |
+
### Video Understanding Benckmarks
|
39 |
+
|
40 |
+
| Model | LLaVA-OneVision-7B | Qwen2-VL-7B | InternVL2-8B | PVC<sub>InternVL2</sub>-8B |
|
41 |
+
| :--------------: | :--: | :--: | :--: | :--: |
|
42 |
+
| \# token/frame | 196 | - | 256 | 64 |
|
43 |
+
| | | | | |
|
44 |
+
| MVbench | 56.7 | 67.0 | 66.4 | 73.8 |
|
45 |
+
| VideoMME w/o-sub | 58.2 | 63.3 | 54.0 | 64.1 |
|
46 |
+
| VideoMME w-sub | 61.5 | 69.0 | 56.9 | 69.7 |
|
47 |
+
| MLVU | 64.7 | - | 52.0 | 72.4 |
|
48 |
+
| LongVideoBench | 56.5 | - | - | 59.2 |
|
49 |
+
| NextQA | 79.4 | - | - | 82.0 |
|
50 |
+
| Egoschema | 60.1 | 66.7 | 55.0 | 59.6 |
|
51 |
+
| PercepTest | 57.1 | 62.3 | 52.0 | 68.4 |
|
52 |
+
| AcNet-QA | 56.6 | - | - | 57.1 |
|
53 |
+
|
54 |
+
### Image Understanding Benckmarks
|
55 |
+
|
56 |
+
| Model | LLaVA-OneVision-7B | Qwen2-VL-7B | InternVL2-8B | PVC<sub>InternVL2</sub>-8B |
|
57 |
+
| :--------------------: | :--: | :--: | :--: | :--: |
|
58 |
+
| \# token/image tile | 729 | - | 256 | 64 |
|
59 |
+
| | | | | |
|
60 |
+
| AI2D<sub>test</sub> | 81.4 | 83.0 | 83.8 | 83.8 |
|
61 |
+
| ChartQA<sub>test</sub> | 80.0 | 83.0 | 83.3 | 84.1 |
|
62 |
+
| DocVQA<sub>test</sub> | 87.5 | 94.5 | 91.6 | 92.5 |
|
63 |
+
| InfoVQA<sub>test</sub> | 68.8 | 76.5 | 74.8 | 75.0 |
|
64 |
+
| SQA<sub>test</sub> | 96.0 | - | 97.1 | 97.7 |
|
65 |
+
| TextVQA<sub>val</sub> | - | 84.3 | 77.4 | 80.0 |
|
66 |
+
| MMB<sub>en-test</sub> | - | 83.0 | 81.7 | 83.9 |
|
67 |
+
| MME<sub>sum</sub> | 1998 | 2327 | 2210 | 2282 |
|
68 |
+
| MMMU<sub>val</sub> | 48.8 | 54.1 | 49.3 | 50.9 |
|
69 |
+
| SEED<sub>I</sub> | 75.4 | - | 76.2 | 77.2 |
|
70 |
+
| OCRBench | - | 866 | 794 | 807 |
|
71 |
+
|
72 |
+
## Quick Start
|
73 |
+
|
74 |
+
```python
|
75 |
+
import numpy as np
|
76 |
+
import torch
|
77 |
+
import torchvision.transforms as T
|
78 |
+
from decord import VideoReader, cpu
|
79 |
+
from PIL import Image
|
80 |
+
from torchvision.transforms.functional import InterpolationMode
|
81 |
+
from transformers import AutoModel, AutoTokenizer
|
82 |
+
|
83 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
84 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
85 |
+
|
86 |
+
def build_transform(input_size):
|
87 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
88 |
+
transform = T.Compose([
|
89 |
+
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
|
90 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
91 |
+
T.ToTensor(),
|
92 |
+
T.Normalize(mean=MEAN, std=STD)
|
93 |
+
])
|
94 |
+
return transform
|
95 |
+
|
96 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
97 |
+
best_ratio_diff = float('inf')
|
98 |
+
best_ratio = (1, 1)
|
99 |
+
area = width * height
|
100 |
+
for ratio in target_ratios:
|
101 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
102 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
103 |
+
if ratio_diff < best_ratio_diff:
|
104 |
+
best_ratio_diff = ratio_diff
|
105 |
+
best_ratio = ratio
|
106 |
+
elif ratio_diff == best_ratio_diff:
|
107 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
108 |
+
best_ratio = ratio
|
109 |
+
return best_ratio
|
110 |
+
|
111 |
+
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
|
112 |
+
orig_width, orig_height = image.size
|
113 |
+
aspect_ratio = orig_width / orig_height
|
114 |
+
|
115 |
+
# calculate the existing image aspect ratio
|
116 |
+
target_ratios = set(
|
117 |
+
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
|
118 |
+
i * j <= max_num and i * j >= min_num)
|
119 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
120 |
+
|
121 |
+
# find the closest aspect ratio to the target
|
122 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
123 |
+
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
|
124 |
+
|
125 |
+
# calculate the target width and height
|
126 |
+
target_width = image_size * target_aspect_ratio[0]
|
127 |
+
target_height = image_size * target_aspect_ratio[1]
|
128 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
129 |
+
|
130 |
+
# resize the image
|
131 |
+
resized_img = image.resize((target_width, target_height))
|
132 |
+
processed_images = []
|
133 |
+
for i in range(blocks):
|
134 |
+
box = (
|
135 |
+
(i % (target_width // image_size)) * image_size,
|
136 |
+
(i // (target_width // image_size)) * image_size,
|
137 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
138 |
+
((i // (target_width // image_size)) + 1) * image_size
|
139 |
+
)
|
140 |
+
# split the image
|
141 |
+
split_img = resized_img.crop(box)
|
142 |
+
processed_images.append(split_img)
|
143 |
+
assert len(processed_images) == blocks
|
144 |
+
if use_thumbnail and len(processed_images) != 1:
|
145 |
+
thumbnail_img = image.resize((image_size, image_size))
|
146 |
+
processed_images.append(thumbnail_img)
|
147 |
+
return processed_images
|
148 |
+
|
149 |
+
def load_image(image_file, input_size=448, max_num=12):
|
150 |
+
image = Image.open(image_file).convert('RGB')
|
151 |
+
transform = build_transform(input_size=input_size)
|
152 |
+
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
153 |
+
pixel_values = [transform(image) for image in images]
|
154 |
+
pixel_values = torch.stack(pixel_values)
|
155 |
+
return pixel_values
|
156 |
+
|
157 |
+
def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
|
158 |
+
if bound:
|
159 |
+
start, end = bound[0], bound[1]
|
160 |
+
else:
|
161 |
+
start, end = -100000, 100000
|
162 |
+
start_idx = max(first_idx, round(start * fps))
|
163 |
+
end_idx = min(round(end * fps), max_frame)
|
164 |
+
seg_size = float(end_idx - start_idx) / num_segments
|
165 |
+
frame_indices = np.array([
|
166 |
+
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
|
167 |
+
for idx in range(num_segments)
|
168 |
+
])
|
169 |
+
return frame_indices
|
170 |
+
|
171 |
+
def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
|
172 |
+
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
|
173 |
+
max_frame = len(vr) - 1
|
174 |
+
fps = float(vr.get_avg_fps())
|
175 |
+
|
176 |
+
pixel_values_list, num_patches_list = [], []
|
177 |
+
transform = build_transform(input_size=input_size)
|
178 |
+
frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
|
179 |
+
for frame_index in frame_indices:
|
180 |
+
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB')
|
181 |
+
img = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
182 |
+
pixel_values = [transform(tile) for tile in img]
|
183 |
+
pixel_values = torch.stack(pixel_values)
|
184 |
+
num_patches_list.append(pixel_values.shape[0])
|
185 |
+
pixel_values_list.append(pixel_values)
|
186 |
+
pixel_values = torch.cat(pixel_values_list)
|
187 |
+
return pixel_values, num_patches_list
|
188 |
+
|
189 |
+
|
190 |
+
path = 'OpenGVLab/PVC-InternVL2-8B'
|
191 |
+
model = AutoModel.from_pretrained(
|
192 |
+
path,
|
193 |
+
torch_dtype=torch.bfloat16,
|
194 |
+
low_cpu_mem_usage=True,
|
195 |
+
trust_remote_code=True).eval().cuda()
|
196 |
+
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
|
197 |
+
generation_config = dict(max_new_tokens=1024, do_sample=True)
|
198 |
+
|
199 |
+
# single-image conversation
|
200 |
+
pixel_values = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
201 |
+
data_flag = torch.tensor([1], dtype=torch.long).cuda()
|
202 |
+
|
203 |
+
question = '<image>\nWhat is in the image?'
|
204 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag)
|
205 |
+
print(f'User: {question}\nAssistant: {response}')
|
206 |
+
|
207 |
+
# multi-image conversation
|
208 |
+
pixel_values1 = load_image('./assets/example_image1.jpg', max_num=12).to(torch.bfloat16).cuda()
|
209 |
+
pixel_values2 = load_image('./assets/example_image2.jpg', max_num=12).to(torch.bfloat16).cuda()
|
210 |
+
pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0)
|
211 |
+
data_flag = torch.tensor([2], dtype=torch.long).cuda()
|
212 |
+
num_patches_list = [pixel_values1.shape[0], pixel_values2.shape[0]]
|
213 |
+
|
214 |
+
question = 'Image-1: <image>\nImage-2: <image>\nWhat are the similarities and differences between these two images.'
|
215 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
|
216 |
+
print(f'User: {question}\nAssistant: {response}')
|
217 |
+
|
218 |
+
# video conversation
|
219 |
+
pixel_values, num_patches_list = load_video('./assets/example_video.mp4', num_segments=64, max_num=1)
|
220 |
+
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
221 |
+
video_prefix = ''.join([f'Frame{i+1}: <image>\n' for i in range(len(num_patches_list))])
|
222 |
+
# Frame1: <image>\nFrame2: <image>\n...\nFrameN: <image>\n{question}
|
223 |
+
data_flag = torch.tensor([3], dtype=torch.long).cuda()
|
224 |
+
|
225 |
+
question = video_prefix + 'Describe this video in detail.'
|
226 |
+
response = model.chat(tokenizer, pixel_values, question, generation_config, data_flag=data_flag, num_patches_list=num_patches_list)
|
227 |
+
print(f'User: {question}\nAssistant: {response}')
|
228 |
+
```
|
229 |
+
|
230 |
+
## License
|
231 |
+
|
232 |
+
This project is released under the MIT license. Parts of this project contain code and models from other sources, which are subject to their respective licenses.
|
assets/example_image1.jpg
ADDED
assets/example_image2.jpg
ADDED
assets/example_video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d921c07bb97224d65a37801541d246067f0d506f08723ffa1ad85c217907ccb8
|
3 |
+
size 1867237
|
assets/overview.png
ADDED