czczup commited on
Commit
3530aa5
·
verified ·
1 Parent(s): ecbbd21

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +11 -19
  2. modeling_intern_vit.py +6 -12
README.md CHANGED
@@ -239,7 +239,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
239
 
240
  # set the max number of tiles in `max_num`
241
  pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
242
- generation_config = dict(max_new_tokens=1024, do_sample=False)
243
 
244
  # pure-text conversation (纯文本对话)
245
  question = 'Hello, who are you?'
@@ -391,7 +391,7 @@ for new_text in streamer:
391
 
392
  ## Finetune
393
 
394
- SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of InternVL, please check [this link](https://github.com/modelscope/swift/blob/main/docs/source_en/Multi-Modal/internvl-best-practice.md) for more details.
395
 
396
  ## Deployment
397
 
@@ -400,7 +400,7 @@ SWIFT from ModelScope community has supported the fine-tuning (Image/Video) of I
400
  LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
401
 
402
  ```sh
403
- pip install lmdeploy
404
  ```
405
 
406
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
@@ -408,14 +408,12 @@ LMDeploy abstracts the complex inference process of multi-modal Vision-Language
408
  #### A 'Hello, world' example
409
 
410
  ```python
411
- from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
412
  from lmdeploy.vl import load_image
413
 
414
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
415
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
416
- chat_template_config = ChatTemplateConfig('internvl-internlm2')
417
- pipe = pipeline(model, chat_template_config=chat_template_config,
418
- backend_config=TurbomindEngineConfig(session_len=8192))
419
  response = pipe(('describe this image', image))
420
  print(response.text)
421
  ```
@@ -429,14 +427,12 @@ When dealing with multiple images, you can put them all in one list. Keep in min
429
  > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
430
 
431
  ```python
432
- from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
433
  from lmdeploy.vl import load_image
434
  from lmdeploy.vl.constants import IMAGE_TOKEN
435
 
436
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
437
- chat_template_config = ChatTemplateConfig('internvl-internlm2')
438
- pipe = pipeline(model, chat_template_config=chat_template_config,
439
- backend_config=TurbomindEngineConfig(session_len=8192))
440
 
441
  image_urls=[
442
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
@@ -454,13 +450,11 @@ print(response.text)
454
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
455
 
456
  ```python
457
- from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig
458
  from lmdeploy.vl import load_image
459
 
460
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
461
- chat_template_config = ChatTemplateConfig('internvl-internlm2')
462
- pipe = pipeline(model, chat_template_config=chat_template_config,
463
- backend_config=TurbomindEngineConfig(session_len=8192))
464
 
465
  image_urls=[
466
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
@@ -476,13 +470,11 @@ print(response)
476
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
477
 
478
  ```python
479
- from lmdeploy import pipeline, TurbomindEngineConfig, ChatTemplateConfig, GenerationConfig
480
  from lmdeploy.vl import load_image
481
 
482
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
483
- chat_template_config = ChatTemplateConfig('internvl-internlm2')
484
- pipe = pipeline(model, chat_template_config=chat_template_config,
485
- backend_config=TurbomindEngineConfig(session_len=8192))
486
 
487
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
488
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
 
239
 
240
  # set the max number of tiles in `max_num`
241
  pixel_values = load_image('./examples/image1.jpg', max_num=12).to(torch.bfloat16).cuda()
242
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
243
 
244
  # pure-text conversation (纯文本对话)
245
  question = 'Hello, who are you?'
 
391
 
392
  ## Finetune
393
 
394
+ Many repositories now support fine-tuning of the InternVL series models, including [InternVL](https://github.com/OpenGVLab/InternVL), [SWIFT](https://github.com/modelscope/ms-swift), [XTurner](https://github.com/InternLM/xtuner), and others. Please refer to their documentation for more details on fine-tuning.
395
 
396
  ## Deployment
397
 
 
400
  LMDeploy is a toolkit for compressing, deploying, and serving LLM, developed by the MMRazor and MMDeploy teams.
401
 
402
  ```sh
403
+ pip install lmdeploy==0.5.3
404
  ```
405
 
406
  LMDeploy abstracts the complex inference process of multi-modal Vision-Language Models (VLM) into an easy-to-use pipeline, similar to the Large Language Model (LLM) inference pipeline.
 
408
  #### A 'Hello, world' example
409
 
410
  ```python
411
+ from lmdeploy import pipeline, TurbomindEngineConfig
412
  from lmdeploy.vl import load_image
413
 
414
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
415
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/tests/data/tiger.jpeg')
416
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
 
 
417
  response = pipe(('describe this image', image))
418
  print(response.text)
419
  ```
 
427
  > Warning: Due to the scarcity of multi-image conversation data, the performance on multi-image tasks may be unstable, and it may require multiple attempts to achieve satisfactory results.
428
 
429
  ```python
430
+ from lmdeploy import pipeline, TurbomindEngineConfig
431
  from lmdeploy.vl import load_image
432
  from lmdeploy.vl.constants import IMAGE_TOKEN
433
 
434
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
435
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
 
 
436
 
437
  image_urls=[
438
  'https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg',
 
450
  Conducting inference with batch prompts is quite straightforward; just place them within a list structure:
451
 
452
  ```python
453
+ from lmdeploy import pipeline, TurbomindEngineConfig
454
  from lmdeploy.vl import load_image
455
 
456
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
457
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
 
 
458
 
459
  image_urls=[
460
  "https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg",
 
470
  There are two ways to do the multi-turn conversations with the pipeline. One is to construct messages according to the format of OpenAI and use above introduced method, the other is to use the `pipeline.chat` interface.
471
 
472
  ```python
473
+ from lmdeploy import pipeline, TurbomindEngineConfig, GenerationConfig
474
  from lmdeploy.vl import load_image
475
 
476
  model = 'OpenGVLab/Mini-InternVL-Chat-2B-V1-5'
477
+ pipe = pipeline(model, backend_config=TurbomindEngineConfig(session_len=8192))
 
 
478
 
479
  image = load_image('https://raw.githubusercontent.com/open-mmlab/mmdeploy/main/demo/resources/human-pose.jpg')
480
  gen_config = GenerationConfig(top_k=40, top_p=0.8, temperature=0.8)
modeling_intern_vit.py CHANGED
@@ -20,18 +20,12 @@ from transformers.utils import logging
20
  from .configuration_intern_vit import InternVisionConfig
21
 
22
  try:
23
- try: # v1
24
- from flash_attn.flash_attn_interface import \
25
- flash_attn_unpadded_qkvpacked_func
26
- except: # v2
27
- from flash_attn.flash_attn_interface import \
28
- flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func
29
-
30
  from flash_attn.bert_padding import pad_input, unpad_input
31
-
 
32
  has_flash_attn = True
33
  except:
34
- print('FlashAttention is not installed.')
35
  has_flash_attn = False
36
 
37
  logger = logging.get_logger(__name__)
@@ -74,7 +68,7 @@ class FlashAttention(nn.Module):
74
  max_s = seqlen
75
  cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
76
  device=qkv.device)
77
- output = flash_attn_unpadded_qkvpacked_func(
78
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
79
  softmax_scale=self.softmax_scale, causal=causal
80
  )
@@ -84,7 +78,7 @@ class FlashAttention(nn.Module):
84
  x = rearrange(qkv, 'b s three h d -> b s (three h d)')
85
  x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
86
  x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
87
- output_unpad = flash_attn_unpadded_qkvpacked_func(
88
  x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
89
  softmax_scale=self.softmax_scale, causal=causal
90
  )
@@ -93,7 +87,7 @@ class FlashAttention(nn.Module):
93
  'b s (h d) -> b s h d', h=nheads)
94
  else:
95
  assert max_s is not None
96
- output = flash_attn_unpadded_qkvpacked_func(
97
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
98
  softmax_scale=self.softmax_scale, causal=causal
99
  )
 
20
  from .configuration_intern_vit import InternVisionConfig
21
 
22
  try:
 
 
 
 
 
 
 
23
  from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.flash_attn_interface import \
25
+ flash_attn_varlen_qkvpacked_func
26
  has_flash_attn = True
27
  except:
28
+ print('FlashAttention2 is not installed.')
29
  has_flash_attn = False
30
 
31
  logger = logging.get_logger(__name__)
 
68
  max_s = seqlen
69
  cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
70
  device=qkv.device)
71
+ output = flash_attn_varlen_qkvpacked_func(
72
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
73
  softmax_scale=self.softmax_scale, causal=causal
74
  )
 
78
  x = rearrange(qkv, 'b s three h d -> b s (three h d)')
79
  x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
80
  x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
81
+ output_unpad = flash_attn_varlen_qkvpacked_func(
82
  x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
83
  softmax_scale=self.softmax_scale, causal=causal
84
  )
 
87
  'b s (h d) -> b s h d', h=nheads)
88
  else:
89
  assert max_s is not None
90
+ output = flash_attn_varlen_qkvpacked_func(
91
  qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
92
  softmax_scale=self.softmax_scale, causal=causal
93
  )